Environmental variables that influence platypus (Ornithorhynchus anatinus) eDNA detection: an insight into eDNA study design for platypus occupation
Breony Webb
A
Abstract
Surveying platypus, Ornithorhynchus anatinus, occupancy patterns presents significant challenges because of their elusive nature and the often-inaccessible environments they inhabit. Traditional methods, such as observer sightings and mark–recapture, are labour-intensive and limited in spatio-temporal coverage. Recent advances in environmental DNA (eDNA) technology offer a promising alternative, allowing for broader and less invasive detection of aquatic species. This study investigates the use of eDNA for detecting platypuses across various environmental conditions in Kosciuszko National Park, New South Wales (NSW), focusing on how abiotic factors such as altitude, stream order, and seasonal variations may influence detection probabilities. Sampling occurred over four seasons from November 2021 to May 2023 at 46 sites, including high-altitude and remote locations. Results indicated that eDNA successfully detected platypuses in previously undocumented high-altitude sites of NSW and showed significant influences of stream order, altitude and seasonality on detection rates. This research highlighted the potential of eDNA to improve platypus distribution knowledge and emphasises the importance of considering environmental factors in monitoring. Future studies should refine eDNA protocols to enhance reliability across diverse habitats.
Keywords: Alpine streams, Australia, detection, eDNA, environmental conservation, monitoring, platypus, semi-aquatic, survey methods.
References
Barnes, M. A., and Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17, 1-17.
| Crossref | Google Scholar |
Bates, D., Maechler, M., Bolker, B., and Walker, S. (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-37. Available at https://CRAN.R-project.org/package=lme4
Bilney, R. J. (2014). Poor historical data drive conservation complacency: the case of mammal decline in south‐eastern Australian forests. Austral Ecology 39, 875-886.
| Crossref | Google Scholar |
Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D., and Vogelnest, L. (2018). Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Scientific Reports 8, 5117.
| Crossref | Google Scholar | PubMed |
Bino, G., Kingsford, R. T., and Wintle, B. A. (2020). A stitch in time – Synergistic impacts to platypus metapopulation extinction risk. Biological Conservation 242, 108399.
| Crossref | Google Scholar |
Bohmann, K., Evans, A., Gilbert, M. T., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., and de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29, 358-367.
| Crossref | Google Scholar | PubMed |
Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A., Foster, J., Wilkinson, J. W., Arnell, A., Williams, P., Dunn, F., and Brotherton, P. (2015). Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation 183, 19-28.
| Crossref | Google Scholar |
Brunt, T., Cecil, M., Griffiths, J., Adams-Hosking, C., and Murray, P. (2021). Where are the platypuses (Ornithorhynchus anatinus) now? A snapshot in time of their distribution in the Greater Brisbane region. Australian Mammalogy 43, 368-372.
| Crossref | Google Scholar |
Buxton, A. S., Groombridge, J. J., Zakaria, N. B., and Griffiths, R. A. (2017). Seasonal variation in environmental DNA in relation to population size and environmental factors. Scientific Reports 7(1), 46294.
| Crossref | Google Scholar | PubMed |
Connolly, J. H., and Obendorf, D. L. (1998). Distribution, capture and physical characteristics of the platypus (Ornithorhynchus anatinus) in Tasmania. Australian Mammalogy 20, 231-237.
| Crossref | Google Scholar |
Faragher, R. A., Grant, T. R., and Carrick, F. N. (1979). Food of the platypus (Ornithorhynchus anatinus) with notes on the food of brown trout (Salmo trutta) in the Shoalhaven River, NSW. Australian Journal of Ecology 4, 171-179.
| Crossref | Google Scholar |
Ficetola, G. F., Miaud, C., Pompanon, F., and Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters: Population Genetics 4, 423-425.
| Crossref | Google Scholar | PubMed |
Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., Rayé, G., and Taberlet, P. (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources 15, 543-556.
| Crossref | Google Scholar | PubMed |
Fremier, A. K., Strickler, K. M., Parzych, J., Powers, S., and Goldberg, C. S. (2019). Stream Transport and Retention of Environmental DNA Pulse Releases in Relation to Hydrogeomorphic Scaling Factors. Environmental Science & Technology 53, 6640-6649.
| Crossref | Google Scholar | PubMed |
Goldberg, C. S., Pilliod, D. S., Arkle, R. S., and Waits, L. P. (2011). Molecular Detection of Vertebrates in Stream Water: a Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders. PLoS One 6(7), e22746.
| Crossref | Google Scholar | PubMed |
Goldney, D. (1998). The distribution and abundance of platypuses in the Thredbo River–Lake Jindabyne system. Australian Mammalogy 20, 303.
| Crossref | Google Scholar |
Govindarajan, A. F., McCartin, L., Adams, A., Allan, E., Belani, A., Francolini, R., Fujii, J., Gomez-Ibañez, D., Kukulya, A., Marin, F., Tradd, K., Yoerger, D. R., McDermott, J. M., and Herrera, S. (2022). Improved biodiversity detection using a large-volume environmental DNA sampler with in-situ filtration and implications for marine eDNA sampling strategies. Deep-Sea Research. Part I, Oceanographic Research Papers 189, 103871.
| Crossref | Google Scholar |
Grant, T. R. (1992). Captures, movements and dispersal of platypus, Ornithorhynchus anatinus, in the Shoalhaven river, New South Wales, with evaluation of capture and marking techniques. In ‘Platypus and Echidnas’. (Ed ML Augee) pp. 255–262. (Royal Zoological Society of New South Wales: Sydney, NSW, Australia)
Grant, T. (2004). Captures, capture mortality, age and sex ratios of platypuses, Ornithorhynchus anatinus, during studies over 30 years in the upper Shoalhaven river in New South Wales. Proceedings of the Linnean Society of New South Wales 125, 217-226.
| Google Scholar |
Grant, T. R., Griffiths, M., and Temple-Smith, P. D. (2004). Breeding in a free-ranging population of platypuses, Ornithorhynchus anatinus, in the upper Shoalhaven River, New South Wales – a 27 year study. Proceedings of the Linnean Society of New South Wales 125, 227-234.
| Google Scholar |
Griffiths, J., Kelly, T., and Weeks, A. (2013). Net-avoidance behaviour in platypuses. Australian Mammalogy 35, 245-247.
| Crossref | Google Scholar |
Griffiths, J., van Rooyen A., Benier, J-M., Coleman, R., and Weeks, A. (2018). Tracking platypus populations through genetic fingerprints. In ‘Proceedings of the 9th Australian Stream 1 Management Conference’, Hobart, Tas, Australia. Available at https://asnevents.s3.amazonaws.com/Abstrakt-FullPaper/51678/9ASM_Griffiths+et+al_paper.pdf
Grigg, G., Beard, L., Grant, T., and Augee, M. (1992). Body-temperature and diurnal activity patterns in the platypus (Ornithorhynchus anatinus) during winter. Australian Journal of Zoology 40, 135-142.
| Crossref | Google Scholar |
Gust, N., and Handasyde, K. (1995). Seasonal variation in the ranging behavior of the platypus (Ornithorhynchus anatinus) on the Goulburn River, Victoria. Australian Journal of Zoology 43, 193-208.
| Crossref | Google Scholar |
Harrison, J. B., Sunday, J. M., and Rogers, S. M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society. B, Biological Sciences 286, 20191409.
| Crossref | Google Scholar | PubMed |
Hawke, T., Bino, G., Kingsford, R. T., Iervasi, D., Iervasi, K., and Taylor, M. D. (2020). Fine‐scale movements and interactions of platypuses, and the impact of an environmental flushing flow. Freshwater Biology 66, 177-188.
| Crossref | Google Scholar |
Hawke, T., Bino, G., Kingsford, R. T., Iervasi, D., Iervasi, K., and Taylor, M. D. (2021). Long-term movements and activity patterns of platypus on regulated rivers. Scientific Reports 11, 3590.
| Crossref | Google Scholar | PubMed |
Hawke, T., Bino, G., Shackleton, M. E., Ross, A. K., and Kingsford, R. T. (2022). Using DNA metabarcoding as a novel approach for analysis of platypus diet. Scientific Reports 12, 2247.
| Crossref | Google Scholar | PubMed |
Hawkins, M., and Battaglia, A. (2009). Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Australian Journal of Zoology 57, 283-293.
| Crossref | Google Scholar |
Holland, N., and Jackson, S. M. (2002). Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). Journal of Zoology 256, 279-288.
| Crossref | Google Scholar |
Lüdecke, D. (2018). ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. Journal of Open Source Software 3, 772.
| Crossref | Google Scholar |
Lugg, W. H., Griffiths, J., van Rooyen, A. R., Weeks, A. R., and Tingley, R. (2017). Optimal survey designs for environmental DNA sampling. Methods in Ecology and Evolution 9, 1049-1059.
| Crossref | Google Scholar |
Mächler, E., Deiner, K., Spahn, F., and Altermatt, F. (2016). Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environmental Science & Technology 50, 305-312.
| Crossref | Google Scholar | PubMed |
Marchant, R., and Grant, T. R. (2015). The productivity of the macro invertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Marine and Freshwater Research 66, 1128-1137.
| Crossref | Google Scholar |
McClenachan, L., Ferretti, F., and Baum, J. K. (2012). From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conservation Letters 5, 349-359.
| Crossref | Google Scholar |
McColl-Gausden, E. F., Griffiths, J., Collins, L., Weeks, A. R., and Tingley, R. (2023). The power of eDNA sampling to investigate the impact of Australian mega-fires on platypus occupancy. Biological Conservation 286, 110219.
| Crossref | Google Scholar |
McLachlan-Troup, T. A., Dickman, C. R., and Grant, T. R. (2010). Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. Journal of Zoology 280, 237-246.
| Crossref | Google Scholar |
NSW Environment and Heritage (2023). BioNet Atlas. Available at https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet [accessed 23 August 2023]
NSW Government. (2018). Water Management (General) Regulation 2018 hydroline spatial data 1.0. Available at https://www.dpie.nsw.gov.au/water/our-work/licensing-and-trade/controlled-activity-approvals/waterfront-land-e-tool/hydro-line-spatial-data [accessed 27 October 2023]
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., and Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences 70, 1123-1130.
| Crossref | Google Scholar |
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., and Waits, L. P. (2014). Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources 14, 109-116.
| Crossref | Google Scholar | PubMed |
Rees, H. C., Gough, K. C., Middleditch, D. J., Patmore, J. R., and Maddison, B. C. (2015). Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. Journal of Applied Ecology 52(4), 827-831.
| Crossref | Google Scholar |
Reuther, C., Dolch, D., and Green, S., et al. (2000). Surveying and monitoring distribution and population trends of the Eurasian otter (Lutra lutra): guidelines and evaluation of the standard method for surveys as recommended by the European Section of the IUCN/SSC Otter Specialist Group. (Gruppe Naturschutz)
Revelle, W. (2024). psych: Procedures for psychological, psychometric, and personality research (R package version 2.4.1) [Manual]. Northwestern University. Available at https://personality-project.org/r/psych-manual.pdf
Roberts, S., and Serena, M. (2024). Use of consolidated time-lapse camera imagery to detect and monitor platypus (Ornithorhynchus anatinus) activity. Australian Mammalogy 46, AM23045.
| Crossref | Google Scholar |
Sanders, E., Nimmo, D. G., Turner, J. M., Wassens, S., and Michael, D. R. (2024). Putting rakali in the spotlight: innovative methods for detecting an elusive semi-aquatic mammal. Wildlife Research 51, WR24002.
| Crossref | Google Scholar |
Serena, M. (1994). Use of time and space by platypus (Ornithorhynchus anatinus: Monotremata) along a Victorian stream. Journal of Zoology 232, 117-131.
| Crossref | Google Scholar |
Serena, M., and Williams, G. A. (1997). Population attributes of platypus (Ornithorhynchus anatinus) in Flinders Chase National Park, Kangaroo Island. The South Australian Naturalist 72, 28-34.
| Google Scholar |
Serena, M., and Williams, G. A. (2012). Effect of sex and age on temporal variation in the frequency and direction of platypus (Ornithorhychus anatinus) captures in fyke nets. Australian Mammalogy 34(1), 75-82.
| Crossref | Google Scholar |
Serena, M., and Williams, G. A. (2013). Movements and cumulative range size of the platypus (Ornithorhynchus anatinus) inferred from mark–recapture studies. Australian Journal of Zoology 60, 352-359.
| Crossref | Google Scholar |
Serena, M., Thomas, J. L., Williams, G. A., and Officer, R. C. E. (1998). Use of stream and river habitats by the platypus, Ornithorhynchus anatinus, in an urban fringe environment. Australian Journal of Zoology 46, 267-282.
| Crossref | Google Scholar |
Serena, M., Williams, G. A., Weeks, A. R., and Griffiths, J. (2014). Variation in platypus (Ornithorhynchus anatinus) life-history attributes and population trajectories in urban streams. Australian Journal of Zoology 62, 223-234.
| Crossref | Google Scholar |
Seymour, M., Edwards, F. K., Cosby, B. J., Bista, I., Scarlett, P. M., Brailsford, F. L., Glanville, H. C., de Bruyn, M., Carvalho, G. R., and Creer, S. (2021). Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Communications Biology 4(1), 512.
| Crossref | Google Scholar | PubMed |
Smart, A. S., Tingley, R., Weeks, A. R., Van Rooyen, A. R., and McCarthy, M. A. (2015). Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications 25, 1944-1952.
| Crossref | Google Scholar | PubMed |
Stoeckle, B. C., Beggel, S., Cerwenka, A. F., Motivans, E., Kuehn, R., and Geist, J. (2017). A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PLoS One 12, e0189119.
| Crossref | Google Scholar | PubMed |
Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 62, 1117-1142.
| Crossref | Google Scholar |
Strickler, K. M., Fremier, A. K., and Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183, 85-92.
| Crossref | Google Scholar |
Thalinger, B., Wolf, E., Traugott, M., and Wanzenböck, J. (2019). Monitoring spawning migrations of potamodromous fish species via eDNA. Scientific Reports 9(1), 15388.
| Crossref | Google Scholar | PubMed |
Thomas, J. L., Parrott, M. L., Handasyde, K. A., and Temple-Smith, P. (2019). Burrow use by juvenile platypuses (Ornithorhynchus anatinus) in their natal home range. Journal of Mammalogy 100, 1182-1190.
| Crossref | Google Scholar |
Thomas, J. L., Parrott, M. L., Handasyde, K. A., and Temple-Smith, P. (2020). Maternal care of platypus nestlings (Ornithorhynchus anatinus). Australian Mammalogy 42, 283-292.
| Crossref | Google Scholar |
Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., et al. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS One 7, e41732.
| Crossref | Google Scholar | PubMed |
Webb, B., Morrison, K., Wright, I., and Ryan, M. (2021). The effect of water quality, macroinvertebrate assemblages and habitat suitability on the distribution of platypuses; a pilot study in Cattai catchment, northwest Sydney. In ‘Proceedings of the 10th Australian Stream Management Conference’. Available at https://asnevents.s3.amazonaws.com/Abstrakt-FullPaper/74342/10ASM+paper+Platypus+.pdf
Yang, J., Zhang, X., Jin, X., Seymour, M., Richter, C., Logares, R., Khim, J., and Klymus, K. (2021). Recent advances in environmental DNA‐based biodiversity assessment and conservation. Diversity and Distributions 27, 1876-1879.
| Crossref | Google Scholar |