Movements and burrow use of newly emerged juvenile and adult female platypuses
Max Boulton A , Jessica Thomas B * , Gilad Bino C , Jessica Clayton A , Guido J. Parra A and Ryan Baring AA
B
C
Abstract
The platypus, a unique mammal endemic to freshwater ecosystems in eastern Australia, faces population declines owing to various anthropogenic pressures. Despite its ecological importance, substantial knowledge gaps exist concerning juvenile movements and adult–juvenile interactions. We investigated total range, burrow range, active range, and burrow usage of platypuses in Coranderrk Creek, Victoria. We radio-tracked three adult female and three juvenile platypuses, recording the location of their resting burrows during the day and their movements during the night. Our results showed that juveniles exhibited significantly larger total ranges (mean juvenile 1473 ± 735 m; adult 920 ± 373 m) and daily ranges than did adults (mean juveniles 568 ± 407 m; adult 306 ± 226 m). Juveniles also had larger burrow ranges and travelled further from their burrows each night. Although no significant differences were observed in total number of burrows used between adults and juveniles, juveniles tended to use more moderate-use burrows (used 2–9 times), whereas adults favoured frequent-use burrows (used >10 times). Additionally, juvenile–adult dyads demonstrated the greatest total range (burrow and active range combined) overlap, and several instances of burrow sharing between adults and juveniles were observed. These findings suggest that juvenile platypuses are more exploratory, with larger ranges and more diverse burrow use patterns than adults. Our study has provided new insights into the spatial behaviour and social interactions of the platypus.
Keywords: burrow range, food abundance, foraging, home range, juvenile, maternal care, movements, platypus.
References
Bino, G., Dolev, A., Yosha, D., Guter, A., King, R., Saltz, D., and Kark, S. (2010). Abrupt spatial and numerical responses of overabundant foxes to a reduction in anthropogenic resources. Journal of Applied Ecology 47(6), 1262-1271.
| Crossref | Google Scholar |
Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D., and Vogelnest, L. (2018). Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Scientific Reports 8(1), 5117.
| Crossref | Google Scholar | PubMed |
Bureau of Meteorology (2022) Climate Data Online. Commonwealth of Australia, Canberra, available at www.bom.gov.au/climate/data [accessed 10 October 2022]
Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24(3), 346-352.
| Crossref | Google Scholar |
Clutton-Brock, T. H., Albon, S. D., and Guinness, F. E. (1985). Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313(5998), 131-133.
| Crossref | Google Scholar |
Finlayson, G. R., Shimmin, G. A., Temple-Smith, P. D., Handasyde, K. A., and Taggart, D. A. (2005). Burrow use and ranging behaviour of the southern hairy-nosed wombat (Lasiorhinus latifrons) in the Murraylands, South Australia. Journal of Zoology 265(2), 189-200.
| Crossref | Google Scholar |
Dunn, P. K., and Smyth, G. K. (2005). Series evaluation of Tweedie exponential dispersion model densities. Statistics and Computing 15, 267-280.
| Crossref | Google Scholar |
Gardner, J., and Serena, M. (1995). Spatial-Organization and Movement Patterns of Adult Male Platypus, Ornithorhynchus anatinus (Monotremata, Ornithorhynchidae). Australian Journal of Zoology 43(1), 91-103.
| Crossref | Google Scholar |
Glen, A., and Dickman, C. (2006). Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. Journal of Zoology 268(4), 347-354.
| Crossref | Google Scholar |
Goldingay, R. L. (2015). A review of home-range studies on Australian terrestrial vertebrates: adequacy of studies, testing of hypotheses, and relevance to conservation and international studies. Australian Journal of Zoology 63(2), 136-146.
| Crossref | Google Scholar |
Gottwald, J., Zeidler, R., Friess, N., Ludwig, M., Reudenbach, C., and Nauss, T. (2019). Introduction of an automatic and open‐source radio‐tracking system for small animals. Methods in Ecology and Evolution 10(12), 2163-2172.
| Crossref | Google Scholar |
Grant, T., Serena, M., Williams, G. A., and Temple-Smith, P. (2024). Age determination in the platypus (Ornithorhynchus anatinus) using spur sheath and spur developmental stages: a review. Australian Mammalogy 46(3), AM24020.
| Crossref | Google Scholar |
Gust, N., and Handasyde, K. (1995). Seasonal-Variation in the Ranging Behavior of the Platypus (Ornithorhynchus anatinus) on the Goulburn River, Victoria. Australian Journal of Zoology 43(2), 193-208.
| Crossref | Google Scholar |
Hawke, T., Bino, G., and Kingsford, R. T. (2019). A silent demise: Historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Global Ecology and Conservation 20, e00720.
| Crossref | Google Scholar |
Hayes, L. D., Chesh, A. S., and Ebensperger, L. A. (2007). Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113(2), 155-165.
| Crossref | Google Scholar |
Hohnen, R., Smith, J., Mulvaney, J., Evans, T., and Mooney, T. (2022). Impacts of ‘Curiosity’ baiting on feral cat populations in woodland habitats of Kangaroo Island, South Australia. Wildlife Research 49(7), 637-645.
| Crossref | Google Scholar |
Jeglinski, J. W., Werner, C., Robinson, P. W., Costa, D. P., and Trillmich, F. (2012). Age, body mass and environmental variation shape the foraging ontogeny of Galapagos sea lions. Marine Ecology Progress Series 453, 279-296.
| Crossref | Google Scholar |
Kasper, C. B., Soares, J. B., and Freitas, T. R. (2012). Differential patterns of home-range, net displacement and resting sites use of Conepatus chinga in southern Brazil. Mammalian Biology 77, 358-362.
| Crossref | Google Scholar |
Ke, D., and Lu, X. (2009). Burrow use by Tibetan ground tits Pseudopodoces humilis: coping with life at high altitudes. Ibis 151(2), 321-331.
| Crossref | Google Scholar |
Kozakai, C., Nemoto, Y., Nakajima, A., Koike, S., Ohnishi, N., and Yamazaki, K. (2017). Influence of food availability on matrilineal site fidelity of female Asian black bears. Mammal Study 42(4), 219-230.
| Crossref | Google Scholar |
Lacey, E. A., O’brien, S. L., Sobrero, R., and Ebensperger, L. A. (2019). Spatial relationships among free-living cururos (Spalacopus cyanus) demonstrate burrow sharing and communal nesting. Journal of Mammalogy 100(6), 1918-1927.
| Crossref | Google Scholar |
Lenth, R. V. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.8. https://CRAN.R-project.org/package=emmeans
Marchant, R., and Grant, T. R. (2015). The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Marine and Freshwater Research 66(12), 1128-1137.
| Crossref | Google Scholar |
Martin, J. K. (2006). Den-use and home-range characteristics of bobucks, Trichosurus cunninghami, resident in a forest patch. Australian Journal of Zoology 54(4), 225-234.
| Crossref | Google Scholar |
McLachlan-Troup, T. A., Dickman, C. R., and Grant, T. R. (2010). Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. Journal of Zoology 280(3), 237-246.
| Crossref | Google Scholar |
Mitchell, M. S., and Powell, R. A. (2012). Foraging optimally for home ranges. Journal of Mammalogy 93(4), 917-928.
| Crossref | Google Scholar |
Nicol, S. C., Vanpé, C., Sprent, J., Morrow, G., and Andersen, N. A. (2011). Spatial ecology of a ubiquitous Australian anteater, the short-beaked echidna (Tachyglossus aculeatus). Journal of Mammalogy 92(1), 101-110.
| Crossref | Google Scholar |
Opiang, M. D. (2009). Home ranges, movement, and den use in long-beaked echidnas, Zaglossus bartoni, from Papua New Guinea. Journal of Mammalogy 90(2), 340-346.
| Crossref | Google Scholar |
Otley, H., Munks, S., and Hindell, M. (2000). Activity patterns, movements and burrows of platypuses (Ornithorhynchus anatinus) in a sub-alpine Tasmanian lake. Australian Journal of Zoology 48(6), 701-713.
| Crossref | Google Scholar |
Powell, R. A., and Mitchell, M. S. (2012). What is a home range? Journal of Mammalogy 93(4), 948-958.
| Crossref | Google Scholar |
Qian, D., Li, Q., Fan, B., Lan, Y., and Cao, G. (2021). Characterization of the spatial distribution of plateau pika burrows along an alpine grassland degradation gradient on the Qinghai–Tibet Plateau. Ecology and Evolution 11(21), 14905-14915.
| Crossref | Google Scholar | PubMed |
R Development Core Team. (2023). ‘R: a language and environment for statistical computing. R Foundation for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria) ISBN 3-900051-07-0. Available at http://www.R-project.org
Ripley, B. D., and Venables, W. N. (2022). nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models. R package version 7.3-17. https://CRAN.R-project.org/package=nnet
Serena, M. (1994). Use of time and space by platypus (Ornithorhynchus anatinus: Monotremata) along a Victorian stream. Journal of Zoology 232(1), 117-131.
| Crossref | Google Scholar |
Serena, M., and Williams, G. A. (2013). Movements and cumulative range size of the platypus (Ornithorhynchus anatinus) inferred from mark–recapture studies. Australian Journal of Zoology 60(5), 352-359.
| Crossref | Google Scholar |
Serena, M., Thomas, J., Williams, G., and Officer, R. (1998). Use of stream and river habitats by the platypus, Ornithorhynchus anatinus, in an urban fringe environment. Australian Journal of Zoology 46(3), 267-282.
| Crossref | Google Scholar |
Serena, M., Worley, M., Swinnerton, M., and Williams, G. (2001). Effect of food availability and habitat on the distribution of platypus (Ornithorhynchus anatinus) foraging activity. Australian Journal of Zoology 49(3), 263-277.
| Crossref | Google Scholar |
Thomas, J. L., Handasyde, K. A., Temple-Smith, P., and Parrott, M. L. (2017). Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Australian Journal of Zoology 65(5), 319-327.
| Crossref | Google Scholar |
Thomas, J., Handasyde, K., Parrott, M., and Temple-Smith, P. (2018). The platypus nest: burrow structure and nesting behaviour in captivity. Australian Journal of Zoology 65(6), 347-356.
| Crossref | Google Scholar |
Thomas, J. L., Parrott, M. L., Handasyde, K. A., and Temple-Smith, P. (2019). Burrow use by juvenile platypuses (Ornithorhynchus anatinus) in their natal home range. Journal of Mammalogy 100(4), 1182-1190.
| Crossref | Google Scholar |
Thomas, J. L., Parrott, M. L., Handasyde, K. A., and Temple-Smith, P. (2020). Maternal care of platypus nestlings (Ornithorhynchus anatinus). Australian Mammalogy 42(3), 283-292.
| Crossref | Google Scholar |
Vleck, D. (1979). The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiological Zoology 52(2), 122-136.
| Crossref | Google Scholar |
Williams, G. A., Serena, M., and Grant, T. R. (2013). Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35(1), 107-114.
| Crossref | Google Scholar |
Zalewski, A. (1997). Patterns of resting site use by pine marten Martes martes in Białowieża National Park (Poland). Acta Theriologica 42(2), 153-168.
| Crossref | Google Scholar |
Zedrosser, A., Støen, O.-G., Sæbø, S., and Swenson, J. E. (2007). Should I stay or should I go? Natal dispersal in the brown bear. Animal Behaviour 74(3), 369-376.
| Crossref | Google Scholar |
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer. https://link.springer.com/book/10.1007/978-0-387-87458-6