Feasibility of nocturnal thermal drone surveys for detecting endangered mahogany gliders (Petaurus gracilis) in tropical lowland woodlands
Emmeline Bernadette Barrett Norris
A
B
C
D
E
Abstract
Reliable detection methods are essential for monitoring threatened species. Yet detection remains challenging for low-density populations of nocturnal, canopy-dwelling mammals. The endangered mahogany glider (Petaurus gracilis), endemic to lowland woodlands in north Queensland (Qld), Australia, is difficult to survey using conventional survey methods, which can be labour-intensive and yield low detection rates. We tested the feasibility of using thermal drones for detecting mahogany gliders by conducting four consecutive nocturnal flights over a 64-ha woodland fragment that supports a high-density population. Six individuals were detected within 2 h while flying the drone 10–30 m above the canopy and using oblique camera angles. We identified gliders in thermal imagery by their size, long tail and gliding behaviour, with no visible disturbance observed. These preliminary results indicate that thermal drones can detect mahogany gliders under certain conditions. With further validation, this approach could complement existing techniques for presence–absence surveys, population assessments and behavioural observations.
Keywords: arboreal mammal, fauna survey, Petauridae, population monitoring, presence–absence, remote sensing, RPAS, UAV.
References
Baxter, P. W. J., and Hamilton, G. (2018). Learning to fly: integrating spatial ecology with unmanned aerial vehicle surveys. Ecosphere 9(4), e02194.
| Crossref | Google Scholar |
Beranek, C. T., Roff, A., Denholm, B., Howell, L. G., and Witt, R. R. (2021). Trialling a real-time drone detection and validation protocol for the koala (Phascolarctos cinereus). Australian Mammalogy 43(2), 260-264.
| Crossref | Google Scholar |
Berris, K. K., Ruykys, L., Goldingay, R. L., Morrant, D. S., Packer, J. G., Descovich, K., Matthews, A., Coetsee, A., Nicolson, V., Horsup, A., Moseby, K., Jose, H. L., Gill, S. J., and Taggart, D. A. (2022). Wombats, bandicoots, bilbies, possums and gliders. In ‘Wildlife Research in Australia: Practical and Applied Methods’. (Eds B. P. Smith, H. P. Waudby, C. Alberthsen, J. O. Hampton.) pp. 401–411. (CSIRO Publishing: Melbourne.)
Brack, I. V., Kindel, A., and Oliveira, L. F. B. (2018). Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods in Ecology and Evolution 9, 1864-1873.
| Crossref | Google Scholar |
Burke, C., Rashman, M. F., Longmore, S. N., McAree, O., Glover-Kapfer, P., Ancrenaz, M., and Wich, S. A. (2019). Successful observation of orangutans in the wild with thermal-equipped drones. Journal of Unmanned Vehicle Systems 7(3), 235-257.
| Crossref | Google Scholar |
Chang, Y., Bertola, L. V., and Hoskin, C. J. (2023). Species distribution modelling of the endangered Mahogany Glider (Petaurus gracilis) reveals key areas for targeted survey and conservation. Austral Ecology 48, 289-312.
| Crossref | Google Scholar |
Chang, Y., Bertola, L. V., Zenger, K. R., and Hoskin, C. J. (2025a). Conservation genetics of mahogany gliders and their complex evolutionary relationship with squirrel gliders. Conservation Genetics 26, 731-750.
| Crossref | Google Scholar |
Chang, Y., Lin, C., and Hoskin, C. J. (2025b). Estimating the abundance of an endangered arboreal marsupial using camera traps and an integrated species distribution model. Ecology and Evolution 15, e72037.
| Crossref | Google Scholar |
Gazagne, E., Gray, R. J., Ratajszczak, R., Brotcorne, F., and Hambuckers, A. (2023). Unmanned aerial vehicles (UAVs) with thermal infrared (TIR) sensors are effective for monitoring and counting threatened Vietnamese primates. Primates 64(4), 407-413.
| Crossref | Google Scholar | PubMed |
Goldingay, R. L., and Taylor, B. D. (2022). Comparison of spotlighting and trapping in population surveys of the squirrel glider. Australian Mammalogy 44(2), 208-212.
| Crossref | Google Scholar |
Goldingay, R. L., Jackson, S. M., Winter, J. W., Harley, D. K. P., Bilney, R. J., Quin, D. G., Smith, G. C., Taylor, B. D., and Kavanagh, R. P. (2024). What’s in a name? Selection of common names among new and revised species of Australian mammals, and the case of the sugar glider. Australian Mammalogy 46, AM23017.
| Crossref | Google Scholar |
Jackson, S. M. (2000a). Population dynamics and life history of the mahogany glider, Petaurus gracilis, and the sugar glider, Petaurus breviceps, in North Queensland. Wildlife Research 27, 21-37.
| Crossref | Google Scholar |
Jackson, S. M. (2000b). Habitat relationships of the mahogany glider, Petaurus gracilis, and the sugar glider, Petaurus breviceps. Wildlife Research 27, 39-48.
| Crossref | Google Scholar |
Jackson, S. M. (2000c). Glide angle in the genus Petaurus and a review of gliding in mammals. Mammal Review 30, 9-30.
| Crossref | Google Scholar |
Jackson, S. M., and Johnson, C. N. (2002). Time allocation to foraging in the mahogany glider Petaurus gracilis (Marsupialia, Petauridae) and a comparison of activity times in exudivorous and folivorous possums and gliders. Journal of Zoology (London) 256, 271-277.
| Crossref | Google Scholar |
Jackson, S. M., Morgan, G., Kemp, J. E., Maughan, M., and Stafford, C. M. (2011). An accurate assessment of habitat loss and current threats of the mahogany glider (Petaurus gracilis). Australian Mammalogy 33, 82-92.
| Crossref | Google Scholar |
Lindenmayer, D. B. (2023). Forest biodiversity declines and extinctions linked with forest degradation: A case study from Australian tall, wet forests. Land 12(3), 528.
| Crossref | Google Scholar |
Lindenmayer, D. B., Cunningham, R. B., Donnelly, C. F., Incoll, R. D., Pope, M. L., Tribolet, C. R., Viggers, K. L., and Welsh, A. H. (2001). How effective is spotlighting for detecting the great glider (Petauroides volans)?. Wildlife Research 28, 105-109.
| Crossref | Google Scholar |
Lindenmayer, D. B., Likens, G. E., Anderson, A., Bowman, D., Bull, C. M., Burns, E., Dickman, C. R., Hoffmann, A. A., Keith, D. A., Liddell, M. J., Lowe, A. J., Metcalfe, D. J., Phinn, S. R., Russell-Smith, J., Thurgate, N., and Wardle, G. M. (2012). Value of long-term ecological studies. Austral Ecology 37(7), 745-757.
| Crossref | Google Scholar |
Lumsden, L. F., Waudby, H. P., Meek, P. D., Crisp, H. A., Cripps, J. K., Cristescu, R., Jamieson, L. T., Nelson, J. L., Teixeira, D., Hodgens, N., Rutter, N., Morrant, D. S., Bower, D. S., Dickman, C. R., and Soennichsen, K. (2022). Detecting and monitoring wildlife remotely. In ‘Wildlife Research in Australia: Practical and Applied Methods’. (Eds B. P. Smith, H. P. Waudby, C. Alberthsen, J. O. Hampton.) pp. 75–95. (CSIRO Publishing: Melbourne.)
Norris, E. B. B. (2025a). Drone surveys cause less disturbance than ground-based surveys in endangered spectacled flying-foxes (Pteropus conspicillatus). Australian Mammalogy 47, AM25010.
| Crossref | Google Scholar |
Norris, E. (2025b). Thermal drone video footage of mahogany gliders (Petaurus gracilis) recorded at Bambaroo, north Queensland, Australia on 30 May 2025. figshare. Media. doi:10.6084/m9.figshare.29484896
Norris, E. B. B., and Larson, J. (2025). Thermal drones are highly effective for detecting elusive Bennett’s tree kangaroos (Dendrolagus bennettianus) in Australia’s tropical rainforests. Australian Mammalogy 47, AM24053.
| Crossref | Google Scholar |
Numminen, E., Jokinen, M., Linden, A., and Vanhatalo, J. (2023). Species ecology can bias population estimates. Biological Conservation 283, 110115.
| Crossref | Google Scholar |
Pinel-Ramos, E. J., Aureli, F., Wich, S., Longmore, S., and Spaan, D. (2024). Evaluating thermal infrared drone flight parameters on spider monkey detection in tropical forests. Sensors 24(17), 5659.
| Crossref | Google Scholar | PubMed |
Pocknee, C. A., Lahoz-Monfort, J. J., Martin, R. W., and Wintle, B. A. (2021). Cost-effectiveness of thermal imaging for monitoring a cryptic arboreal mammal. Wildlife Research 48, 625-634.
| Crossref | Google Scholar |
Rahman, D. A., Sitorus, A. B. Y., and Condro, A. A. (2022). From coastal to montane forest ecosystems, using drones for multi-species research in the tropics. Drones 6(1), 6.
| Crossref | Google Scholar |
Rahman, D. A., Putro, H. R., Mufawwaz, T. A., Rinaldi, D., Yudiarti, Y., Prabowo, E. D., Arief, H., Sihite, J., and Priantara, F. R. N. (2025). Developing a new method using thermal drones for population surveys of the world’s rarest great ape species, Pongo tapanuliensis. Global Ecology and Conservation 58, e03463.
| Crossref | Google Scholar |
Reinegger, R. D., Bissessur, P., Meereechpersad, I., Bhanda, G., Gazagne, E., and Jones, G. (2025). Improving primate detection using thermal infrared imaging: availability and observer errors in drone surveys of mixed tropical forests. International Journal of Remote Sensing 46(11), 4345-4373.
| Crossref | Google Scholar |
Ryan, S. A., Southwell, D. M., Beranek, C. T., Clulow, J., Jordan, N. R., and Witt, R. R. (2025). Estimating the landscape-scale abundance of an arboreal folivore using thermal imaging drones and binomial N-mixture modelling. Biological Conservation 309, 111207.
| Crossref | Google Scholar |
Santos, P. M., Kaizer, M. D., Moreira, D. O., Melo, F. R. D., and Mendes, S. L. (2023). Every flight is a surprise: First records of the southern maned three-toed sloth (Bradypus crinitus: Bradypodidae) through drones. Mammalia 87(3), 223-227.
| Crossref | Google Scholar |
Schultz, E. A., Ellison-Neary, N., Boudreau, M. R., Street, G. M., Jones, L. R., Evans, K. O., and Iglay, R. B. (2024). On the move: Influence of animal movements on count error during drone surveys. Ecology and Evolution 14(10), e70287.
| Crossref | Google Scholar | PubMed |
Seegobin, V. O., Oleksy, R. Z., and Florens, F. B. V. (2024). Foraging habitat quality of an Endangered mass-culled flying fox is reduced by alien plant invasion and improved by alien plant control. Journal for Nature Conservation 78, 126569.
| Crossref | Google Scholar |
Smith, B. P., Waudby, H. P., Dickman, C. R., Soennichsen, K., Mills, C., Howe, A., Woolley, L. A., Griffiths, S. R., Cox, T. E., Clayton, J., Penton, C., Morrant, D. S., Letnic, M., Cullen, D., Stobo-Wilson, A., Taggart, D. A., Gleeson, D., Cripps, J. K., Gill, M. J., and MacDonald, A. J. (2022). Observing wildlife and its signs. In ‘Wildlife Research in Australia: Practical and Applied Methods’. (Eds B. P. Smith, H. P. Waudby, C. Alberthsen, J. O. Hampton.) pp. 42–74. (CSIRO Publishing: Melbourne.)
Trinh-Dinh, H., Wearn, O. R., Ngoprasert, D., Wich, S., and Savini, T. (2024). A drone-based population survey of Delacour’s langur (Trachypithecus delacouri) in the karst forests of northern Vietnam. Biological Conservation 300, 110841.
| Crossref | Google Scholar |
Underwood, A. H., Derhe, M. A., and Jacups, S. (2022). Thermal imaging outshines spotlighting for detecting cryptic, nocturnal mammals in tropical rainforests. Wildlife Research 49, 491-499.
| Crossref | Google Scholar |
Vinson, S. G., Johnson, A. P., and Mikac, K. M. (2020). Thermal cameras as a survey method for Australian arboreal mammals: a focus on greater gliders. Australian Mammalogy 42, 367-374.
| Crossref | Google Scholar |
Wearn, O. R., Trinh-Dinh, H., Ma, C. Y., Khac Le, Q., Nguyen, P., Van Hoang, T., Van Luong, C., Van Hua, T., Van Hoang, Q., Fan, P. F., and Duc Nguyen, T. (2024). Vocal fingerprinting reveals a substantially smaller global population of the Critically Endangered cao vit gibbon (Nomascus nasutus) than previously thought. Scientific Reports 14(1), 416.
| Crossref | Google Scholar | PubMed |
Zhang, H., Turvey, S. T., Pandey, S. P., Song, X., Sun, Z., and Wang, N. (2023). Commercial drones can provide accurate and effective monitoring of the world’s rarest primate. Remote Sensing in Ecology and Conservation 9(6), 775-786.
| Crossref | Google Scholar |