Unraveling the genetic diversity and evolutionary lineages of Catharanthus roseus cultivars through plastome analysis and DNA barcoding
Abeer Al-Andal
A
Abstract
This investigation elucidates the genetic heterogeneity and phylogenetic affinities among eight cultivars of Catharanthus roseus, focusing on petal color and morphological variations.
The primary objective was to elucidate the genetic disparities and evolutionary trajectories among these cultivars, thereby augmenting our comprehension of their genomic architecture and phylogenetic lineages.
The genomic DNA of the cultivars underwent sequencing, assembly, and annotation utilizing the bioinformatic tools NOVOPlasty and GeSeq.
Results showed minimal plastome size variation among cultivars (154,928 bp to 155,066 bp). Group 1 cultivars (1, 6, 8) had elongated petals, whereas Group 2 (2, 3, 4, 5, 7) had broader, orbicular petals. Sequence analysis showed significant variations in photosynthesis-related genes, with distinct single nucleotide polymorphism (SNP) frequencies and insertion/deletion (Indel) patterns between groups. The examination of codon usage and simple sequence repeat (SSR) biomarkers did not yield significant contributions to understanding the speciation process. Phylogenetic relationships were determined using DNA barcoding and key plastid markers (matK, rbcL, trnL). The trnL gene effectively clustered cultivars by petal morphology. Phylogenetic trees showed close genetic relationships within the same tribe, with C. roseus being genetically distinct from other species.
This study has provided comprehensive chloroplast genome assemblies for C. roseus cultivars, advancing our understanding of their genetic diversity and phylogenetic relationships.
The findings enhance our comprehension of speciation mechanisms within the Apocynaceae family and offer important insights for the refinement of taxonomic frameworks, contributing to a deeper evolutionary perspective on the diversification of C. roseus and related species.
Keywords: codon usage, Indels, matK, rbcL, SNPs, speciation, SSRs, trnL.
References
Ahmad W, Asaf S, Al-Rawahi A, Al-Harrasi A, Khan AL (2023) Comparative plastome genomics, taxonomic delimitation and evolutionary divergences of Tetraena hamiensis var. qatarensis and Tetraena simplex (Zygophyllaceae). Scientific Reports 13, 7436.
| Crossref | Google Scholar |
Arnold ML (2004) Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? The Plant Cell 16, 562-570.
| Crossref | Google Scholar |
Aruna MS, Prabha MS, Priya NS, Nadendla R (2015) Catharanthus Roseus: ornamental plant is now medicinal boutique. Journal of Drug Delivery and Therapeutics 5, 1-4.
| Google Scholar |
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P (2023) Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 13, 211.
| Crossref | Google Scholar |
Belinky F, Babenko VN, Rogozin IB, Koonin EV (2018) Purifying and positive selection in the evolution of stop codons. Scientific Reports 8, 9260.
| Crossref | Google Scholar |
Cabelin VLD, Alejandro GJD (2016) Efficiency of matK, rbcL, trnHpsbA, and trnL–F (cpDNA) to molecularly authenticate Philippine ethnomedicinal Apocynaceae through DNA barcoding. Pharmacognosy Magazine 12, S384-S388.
| Crossref | Google Scholar |
Cao Q, Gao Q, Ma X, Zhang F, Xing R, Chi X, Chen S (2022) Plastome structure, phylogenomics and evolution of plastid genes in Swertia (Gentianaceae) in the Qing-Tibetan Plateau. BMC Plant Biology 22, 195.
| Crossref | Google Scholar |
Caron H, Molino J-F, Sabatier D, Léger P, Chaumeil P, Scotti-Saintagne C, Frigério J-M, Scotti I, Franc A, Petit RJ (2019) Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecology and Evolution 9, 4897-4905.
| Crossref | Google Scholar |
Charboneau JLM, Cronn RC, Liston A, Wojciechowski MF, Sanderson MJ (2021) Plastome structural evolution and homoplastic inversions in Neo-Astragalus (Fabaceae). Genome Biology and Evolution 13, evab215.
| Crossref | Google Scholar |
Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325, 682-683.
| Crossref | Google Scholar |
Chaturvedi V, Goyal S, Mukim M, Meghani M, Patwekar F, Patwekar M, Khan SK, Sharma GN (2022) A comprehensive review on Catharanthus roseus L.(G.) Don: clinical pharmacology, ethnopharmacology and phytochemistry. Journal of Pharmacological Research and Developments 4, 17-36.
| Crossref | Google Scholar |
Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z (2018) Formation and change of chloroplast-located plant metabolites in response to light conditions. International Journal of Molecular Sciences 19, 654.
| Crossref | Google Scholar |
Cingolani P, Platts A, Wang Le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92.
| Crossref | Google Scholar |
Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 557-572.
| Crossref | Google Scholar |
de Groot GA, During HJ, Maas JW, Schneider H, Vogel JC, Erkens RHJ (2011) Use of rbcL and trnL–F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective. PLoS ONE 6, e16371.
| Crossref | Google Scholar |
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, Mckenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43, 491-498.
| Crossref | Google Scholar |
Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45, e18.
| Crossref | Google Scholar |
Dierckxsens N, Mardulyn P, Smits G (2020) Unraveling heteroplasmy patterns with NOVOPlasty. NAR Genomics and Bioinformatics 2, lqz011.
| Crossref | Google Scholar |
Dong W, Xu C, Wen J, Zhou S (2020) Evolutionary directions of single nucleotide substitutions and structural mutations in the chloroplast genomes of the family Calycanthaceae. BMC Evolutionary Biology 20, 96.
| Crossref | Google Scholar |
Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Molecular Phylogenetics and Evolution 49, 827-831.
| Crossref | Google Scholar |
Duret L (2002) Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development 12, 640-649.
| Crossref | Google Scholar |
El-Domyati F, Ramadan A, Gadalla N, Edris S, Shokry A, Hassan S, Hassanien S, Baeshen MN, Hajrah N, Al-Kordy M (2012) Identification of molecular markers for flower characteristics in Catharanthus roseus producing anticancer compounds. Life Sci Journal 9, 5949-5960.
| Google Scholar |
Endress ME, Bruyns PV (2000) A revised classification of the Apocynaceae s.l. The Botanical Review 66, 1-56.
| Crossref | Google Scholar |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35, 375-403.
| Crossref | Google Scholar |
Forsythe ES, Williams AM, Sloan DB (2021) Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. The Plant Cell 33, 980-997.
| Crossref | Google Scholar |
Frazão A, Thode VA, Lohmann LG (2023) Comparative chloroplast genomics and insights into the molecular evolution of Tanaecium (Bignonieae, Bignoniaceae). Scientific Reports 13, 12469.
| Crossref | Google Scholar |
Gao W, Chen X, He J, Sha A, Luo Y, Xiao W, Xiong Z, Li Q (2024) Intraspecific and interspecific variations in the synonymous codon usage in mitochondrial genomes of 8 pleurotus strains. BMC Genomics 25, 456.
| Crossref | Google Scholar |
Goswami S, Ali A, Prasad ME, Singh P (2024) Pharmacological significance of Catharanthus roseus in cancer management: a review. Pharmacological Research – Modern Chinese Medicine 11, 100444.
| Crossref | Google Scholar |
Gu J, Li M, He S, Li Z, Wen F, Tan K, Bai X, Hu G (2024) Comparative chloroplast genomes analysis of nine Primulina (Gesneriaceae) rare species, from karst region of southwest China. Scientific Reports 14, 30256.
| Crossref | Google Scholar |
Guimarães G, Cardoso L, Oliveira H, Santos C, Duarte P, Sottomayor M (2012) Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don. AoB Plants 2012, pls002.
| Crossref | Google Scholar |
Hao DC, Huang BL, Chen SL, Mu J (2009) Evolution of the chloroplast trnLtrnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47, 351-369.
| Crossref | Google Scholar |
Hosni HA, Shamso EM (2022) Contribution to the flora of Egypt: taxonomic and nomenclature changes. Taeckholmia 42, 12-26.
| Crossref | Google Scholar |
Hu X, Li Y, Meng F, Duan Y, Sun M, Yang S, Liu H (2024) Analysis of chloroplast genome characteristics and codon usage bias in 14 species of Annonaceae. Functional & Integrative Genomics 24, 109.
| Crossref | Google Scholar |
Jamal QMS, Ahmad V (2024) Identification of metabolites from Catharanthus roseus leaves and stem extract, and in vitro and in silico antibacterial activity against food pathogens. Pharmaceuticals 17, 450.
| Crossref | Google Scholar |
Jiang D, Cai X, Gong M, Xia M, Xing H, Dong S, Tian S, Li J, Lin J, Liu Y, Li H-L (2023) Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genomics 24, 30.
| Crossref | Google Scholar |
Kalwij JM (2012) Review of ‘The Plant List, a working list of all plant species’. Journal of Vegetation Science 23, 998-1002.
| Crossref | Google Scholar |
Kan J, Nie L, Wang M, Tiwari R, Tembrock LR, Wang J (2024) The Mendelian pea pan-plastome: insights into genomic structure, evolutionary history, and genetic diversity of an essential food crop. Genomics Communications 1, e004.
| Crossref | Google Scholar |
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar |
Krawczyk K, Paukszto Ł, Maździarz M, Sawicki J (2023) The low level of plastome differentiation observed in some lineages of Poales hinders molecular species identification. Frontiers in Plant Science 14, 1275377.
| Crossref | Google Scholar |
Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH–psbA spacer region. PLoS ONE 2, e508.
| Crossref | Google Scholar |
Kulagina N, Méteignier L-V, Papon N, O’connor SE, Courdavault V (2022) More than a Catharanthus plant: a multicellular and pluri-organelle alkaloid-producing factory. Current Opinion in Plant Biology 67, 102200.
| Crossref | Google Scholar |
Kumar A, Singhal KC, Sharma RA, Vyas GK, Kumar V (2014) Molecular characterisation of Catharanthus roseus cultivars from various regions of rajasthan based on rapd marker. International Journal of Pharmaceutical Sciences and Research 5, 3936-3941.
| Crossref | Google Scholar |
Leypold NA, Speicher MR (2021) Evolutionary conservation in noncoding genomic regions. Trends in Genetics 37, 903-918.
| Crossref | Google Scholar |
Li H, Xiao W, Tong T, Li Y, Zhang M, Lin X, Zou X, Wu Q, Guo X (2021) The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Scientific Reports 11, 1424.
| Crossref | Google Scholar |
Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, Payne RME, Serna Guerrero DA, Gase K, Yamamoto K, Vaillancourt B, Caputi L, O’Connor SE, Robin Buell C (2023) Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nature Chemical Biology 19, 1031-1041.
| Crossref | Google Scholar | PubMed |
Liu L, Lin N, Liu X, Yang S, Wang W, Wan X (2020) From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science 11, 256.
| Crossref | Google Scholar |
Liu H, Ye H, Zhang N, Ma J, Wang J, Hu G, Li M, Zhao P (2022) Comparative analyses of chloroplast genomes provide comprehensive insights into the adaptive evolution of Paphiopedilum (Orchidaceae). Horticulturae 8, 391.
| Crossref | Google Scholar |
Lubna , Asaf S, Jan R, Asif S, Bilal S, Khan AL, Kim K-M, Lee I-J, AL-Harrasi A (2024) Plastome diversity and evolution in mosses: insights from structural characterization, comparative genomics, and phylogenetic analysis. International Journal of Biological Macromolecules 257, 128608.
| Crossref | Google Scholar |
Mallott EK, Garber PA, Malhi RS (2018) trnL outperforms rbcL as a DNA metabarcoding marker when compared with the observed plant component of the diet of wild white-faced capuchins (Cebus capucinus, Primates). PLoS ONE 13, e0199556.
| Crossref | Google Scholar |
Matiz-Ceron L, Reyes A, Anzola J (2022) Taxonomical evaluation of plant chloroplastic markers by bayesian classifier. Frontiers in Plant Science 12, 782663.
| Crossref | Google Scholar |
Meena RK, Negi N, Uniyal N, Shamoon A, Bhandari MS, Pandey S, Negi RK, Sharma R, Ginwal HS (2020) Chloroplast-based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. 3 Biotech 10, 534.
| Crossref | Google Scholar |
Mokhtar MM, Alsamman AM, El Allali A (2023) MegaSSR: a web server for large scale microsatellite identification, classification, and marker development. Frontiers in Plant Science 14, 1219055.
| Crossref | Google Scholar |
Müller KF, Borsch T, Hilu KW (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT–F, and rbcL in basal angiosperms. Molecular Phylogenetics and Evolution 41, 99-117.
| Crossref | Google Scholar |
Nazar N, Goyder DJ, Clarkson JJ, Mahmood T, Chase MW (2013) The taxonomy and systematics of Apocynaceae: where we stand in 2012. Botanical Journal of the Linnean Society 171, 482-490.
| Crossref | Google Scholar |
Nazar N, Clarkson JJ, Goyder D, Kaky E, Mahmood T, Chase MW (2019) Phylogenetic relationships in Apocynaceae based on nuclear PHYA and plastid trnL–F sequences, with a focus on tribal relationships. Caryologia 72, 55-81.
| Crossref | Google Scholar |
Pham HNT, Sakoff JA, Vuong QV, Bowyer MC, Scarlett CJ (2019) Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Molecular Biology Reports 46, 3265-3273.
| Crossref | Google Scholar |
Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Systematics and Evolution 271, 101-122.
| Crossref | Google Scholar |
Ravikumar B, Dhatt KK (2024) Genetic analysis of flower colour variation in periwinkle (Catharanthus roseus L.) inbred lines. Genetic Resources and Crop Evolution 71, 2247-2253.
| Crossref | Google Scholar |
Robbins EHJ, Kelly S (2023) The evolutionary constraints on angiosperm chloroplast adaptation. Genome Biology and Evolution 15, evad101.
| Crossref | Google Scholar |
Salama I, Ragab E, Mohamed MH (2020) Impact of environmental diversity in Egypt on Catharanthus roseus cultivars genome and assessment that by different DNA markers. Egyptian Journal of Radiation Sciences and Applications 33, 33-44.
| Crossref | Google Scholar |
Samiyarsih S, Naipospos N, Palupi D (2019) Variability of Catharanthus roseus based on morphological and anatomical characters, and chlorophyll contents. Biodiversitas Journal of Biological Diversity 20, 2986-2993.
| Crossref | Google Scholar |
Schneider H, Ranker TA, Russell SJ, Cranfill R, Geiger JMO, Aguraiuja R, Wood KR, Grundmann M, Kloberdanz K, Vogel JC (2005) Origin of the endemic fern genus Diellia coincides with the renewal of Hawaiian terrestrial life in the Miocene. Proceedings of the Royal Society B: Biological Sciences 272, 455-460.
| Crossref | Google Scholar |
Sebastin R, Kim J, Jo I-H, Yu J-K, Jang W, Han S, Park H-S, Algarawi AM, Hatamleh AA, So Y-S, Shim D, Chung J-W (2024) Comparative chloroplast genome analyses of cultivated and wild capsicum species shed light on evolution and phylogeny. BMC Plant Biology 24, 797.
| Crossref | Google Scholar |
Shamso EM, Hosni HA, Hosny AI, Rabei SH, Elgamal IAEr (2023) Contribution to the flora of Egypt: a critical inventory of newly recorded vascular taxa of Egypt. Scientific Journal for Damietta Faculty of Science 13, 111-149.
| Crossref | Google Scholar |
Shang C, Li E, Yu Z, Lian M, Chen Z, Liu K, Xu L, Tong Z, Wang M, Dong W (2022) Chloroplast genomic resources and genetic divergence of endangered species Bretschneidera sinensis (Bretschneideraceae). Frontiers in Ecology and Evolution 10, 873100.
| Crossref | Google Scholar |
Sharma MK, Kumar M, Renu (2021) Biosynthesis and modulation of terpenoid indole alkaloids in Catharanthus roseus: a review of targeting genes and secondary metabolites. Journal of Pure and Applied Microbiology 15, 1745-1758.
| Crossref | Google Scholar |
Shaw J, Shafer HL, Leonard OR, Kovach MJ, Schorr M, Morris AB (2014) Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. American Journal of Botany 101, 1987-2004.
| Crossref | Google Scholar |
She J, Yan H, Yang J, Xu W, Su Z (2019) croFGD: Catharanthus roseus Functional Genomics Database. Frontiers in Genetics 10, 238.
| Crossref | Google Scholar |
Shi N, Yuan Y, Huang R, Wen G (2024) Analysis of codon usage patterns in complete plastomes of four medicinal Polygonatum species (Asparagaceae). Frontiers in Genetics 15, 1401013.
| Crossref | Google Scholar |
Stelkens R, Seehausen O (2009) Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884-897.
| Crossref | Google Scholar |
Stevens PF, Davis H (2001) Angiosperm phylogeny website. Missouri Botanical Garden, St Louis, MO, USA. Available at http://www.mobot.org/MOBOT/research/APweb/
Stevens PF, Davis HM (2005) The angiosperm phylogeny Website – a tool for reference and teaching in a time of change. Proceedings of the American Society for Information Science and Technology 42,.
| Crossref | Google Scholar |
Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28, 1102-1104.
| Crossref | Google Scholar |
Sun J, Wang Y, Liu Y, Xu C, Yuan Q, Guo L, Huang L (2020) Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles species. Scientific Reports 10, 11466.
| Crossref | Google Scholar |
Susanto AH, Dwiati M (2024) Genetic comparison among some cultivars of Catharanthus roseus (L.) G.Don. using three intergenic spacers of the chloroplast genome. Biodiversitas Journal of Biological Diversity 25, 2999-3007.
| Crossref | Google Scholar |
Suzuki H, Morton BR (2016) Codon adaptation of plastid genes. PLoS ONE 11, e0154306.
| Crossref | Google Scholar |
The Angiosperm Phylogeny Group, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1-20.
| Crossref | Google Scholar |
Tiernan N, Nakamura K, Burns C, Jestrow B, Oviedo Prieto R, Francisco-Ortega J (2023) Phylogenetic relationships of Cuban and Caribbean Plumeria (Apocynaceae) based on the plastid genome. Biological Journal of the Linnean Society 140, 397-412.
| Crossref | Google Scholar |
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45, W6-W11.
| Crossref | Google Scholar |
Torka P, Przespolewski E, Evens AM (2022) Treatment strategies for advanced classical Hodgkin lymphoma in the times of dacarbazine shortage. JCO Oncology Practice 18, 491-497.
| Crossref | Google Scholar | PubMed |
Triest L (2008) Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: a review. Aquatic Botany 89, 138-154.
| Crossref | Google Scholar |
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z (2021) Towards the well-tempered chloroplast DNA sequences. Plants 10, 1360.
| Crossref | Google Scholar |
Van Der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, Depristo MA (2013) From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics 43, 11.10.1-11.10.33.
| Crossref | Google Scholar |
Wang L, Xing H, Yuan Y, Wang X, Saeed M, Tao J, Feng W, Zhang G, Song X, Sun X (2018) Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS ONE 13, e0194372.
| Crossref | Google Scholar |
Wang J, Yan Z, Zhong P, Shen Z, Yang G, Ma L (2022a) Screening of universal DNA barcodes for identifying grass species of Gramineae. Frontiers in Plant Science 13, 998863.
| Crossref | Google Scholar |
Wang S, Gao J, Chao H, Li Z, Pu W, Wang Y, Chen M (2022b) Comparative chloroplast genomes of Nicotiana Species (Solanaceae): insights into the genetic variation, phylogenetic relationship, and polyploid speciation. Frontiers in Plant Science 13, 899252.
| Crossref | Google Scholar |
Wang Y, Zhang C-F, Odago WO, Jiang H, Yang J-X, Hu G-W, Wang Q-F (2023a) Evolution of 101 Apocynaceae plastomes and phylogenetic implications. Molecular Phylogenetics and Evolution 180, 107688.
| Crossref | Google Scholar |
Wang W, Wang X, Shi Y, Yin Q, Gao R, Wang M, Xiang L, Wu L (2023b) Identification of Laportea bulbifera using the complete chloroplast genome as a potentially effective super-barcode. Journal of Applied Genetics 64, 231-245.
| Crossref | Google Scholar |
Wang J, Kan J, Wang J, Yan X, Li Y, Soe T, Tembrock LR, Xing G, Li S, Wu Z, Jia M (2024a) The pan-plastome of Prunus mume: insights into Prunus diversity, phylogeny, and domestication history. Frontiers in Plant Science 15, 1404071.
| Crossref | Google Scholar |
Wang X, Guo L, Ding L, Medina L, Wang R, Li P (2024b) Comparative plastome analyses and evolutionary relationships of 25 East Asian species within the medicinal plant genus Scrophularia (Scrophulariaceae). Frontiers in Plant Science 15, 1439206.
| Crossref | Google Scholar |
Wu H, Li D-Z, Ma P-F (2024) Unprecedented variation pattern of plastid genomes and the potential role in adaptive evolution in Poales. BMC Biology 22, 97.
| Crossref | Google Scholar |
Xiang Y-N, Wang X-Q, Ding L-L, Bai X-Y, Feng Y-Q, Qi Z-C, Sun Y-T, Yan X-L (2024) Deciphering the plastomic code of chinese hog-peanut (Amphicarpaea edgeworthii Benth., Leguminosae): comparative genomics and evolutionary insights within the phaseoleae tribe. Genes 15, 88.
| Crossref | Google Scholar |
Xu Z, Wang G, Wang Q, Li X, Zhang G, Qurban A, Zhang C, Zhou Y, Si H, Hu L, Wang F, Wang Y, Tian Z, Chen W, Jin S, Ding F (2023) A near-complete genome assembly of Catharanthus roseus and insights into its vinblastine biosynthesis and high susceptibility to the Huanglongbing pathogen. Plant Communications 4, 100661.
| Crossref | Google Scholar |
Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39, 306-314.
| Crossref | Google Scholar |
Yang J, Vázquez L, Chen X, Li H, Zhang H, Liu Z, Zhao G (2017) Development of chloroplast and nuclear DNA markers for Chinese oaks (Quercus subgenus Quercus) and assessment of their utility as DNA barcodes. Frontiers in Plant Science 8, 816.
| Crossref | Google Scholar |
Yang L, Zhang S, Wu C, Jiang X, Deng M (2024) Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae). BMC Plant Biology 24, 1277.
| Crossref | Google Scholar |
Zeb U, Wang X, AzizUllah A, Fiaz S, Khan H, Ullah S, Ali H, Shahzad K (2022) Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species. Saudi Journal of Biological Sciences 29, 1618-1627.
| Crossref | Google Scholar |
Zhang Y, Tian L, Lu C (2023) Chloroplast gene expression: recent advances and perspectives. Plant Communications 4, 100611.
| Crossref | Google Scholar |
Zhang E, Ma X, Guo T, Wu Y, Zhang L (2024) Comparative analysis and phylogeny of the complete chloroplast genomes of nine Cynanchum (Apocynaceae) species. Genes 15, 884.
| Crossref | Google Scholar |
Zhou Z, Dang Y, Zhou M, Li L, Yu C-H, Fu J, Chen S, Liu Y (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proceedings of the National Academy of Sciences 113, E6117-E6125.
| Crossref | Google Scholar |
Zhou C, Tao F, Long R, Yang X, Wu X, Xiang L, Zhou X, Girdthai T (2024) The complete chloroplast genome of Mussaenda pubescens and phylogenetic analysis. Scientific Reports 14, 9131.
| Crossref | Google Scholar |
Zoschke R, Bock R (2018) Chloroplast translation: structural and functional organization, operational control, and regulation. The Plant Cell 30, 745-770.
| Crossref | Google Scholar |
Zupok A, Kozul D, Schöttler MA, Niehörster J, Garbsch F, Liere K, Fischer A, Zoschke R, Malinova I, Bock R, Greiner S (2021) A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. The Plant Cell 33, 2583-2601.
| Crossref | Google Scholar |