Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematic study of the Australian plant bug genus Xasmasoma, gen. nov. (Insecta : Heteroptera : Miridae : Orthotylinae), including host plant and biogeographic analysis, and description of twelve new species

Marina Cheng https://orcid.org/0000-0002-1061-9697 A B and Gerasimos Cassis https://orcid.org/0000-0003-0519-664X A
+ Author Affiliations
- Author Affiliations

A Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: marina.cheng@unsw.edu.au

Invertebrate Systematics 33(1) 1-70 https://doi.org/10.1071/IS18009
Submitted: 7 February 2018  Accepted: 22 June 2018   Published: 5 February 2019

Abstract

A new Australian genus of Orthotylini, Xasmasoma, gen. nov. is described, with 12 new included species: X. acuminatus, sp. nov., X. agana, sp. nov., X. carrollae, sp. nov., X. celiae, sp. nov., X. chamelaucieaphila, sp. nov., X. mareeba, sp. nov., X. mimae, sp. nov., X. mungallala, sp. nov., X. nillinghoo, sp. nov., X. schuhi, sp. nov., X. silveirae, sp. nov. and X. woodstocki, sp. nov. These species were analysed phylogenetically using 25 morphology-based characters and molecular alignments (COI, 16S, 18S and 28S; 2096 base pairs), with the genus found to be monophyletic based on molecular, morphological and combined analyses. An analysis of host plant associations demonstrated no pattern of co-divergence and limited phylogenetic conservatism, aside from two subclades with respective Calytrix and Myrtaceae preferences. The biogeographic analysis revealed a south-western (South-west Interzone, Western Desert) area relationship, which is in distinction to the orthotyline genus Naranjakotta. The taxonomic component includes an identification key to species and diagnostic characters are illustrated, with detailed documentation of the male genitalia, and the genus uniquely possesses tile-like texture on the apex of the apophysis of the left paramere, and a single endosomal spicule.

Additional keywords: Orthotylini, taxonomy, phylogeny, host plants, Australia.


References

Bagils, R. Z., Ung, V., Grand, A., Vignes-Lebbe, R., Cao, N., and Ducasse, J. (2012). LisBeth: new cladistics for phylogenetics and biogeography. Comptes Rendus Palévol 11, 563–566.
LisBeth: new cladistics for phylogenetics and biogeography.Crossref | GoogleScholarGoogle Scholar |

Breinholt, J. W., and Kawahara, A. Y. (2013). Phylotranscriptomics: saturated third codon positions radically influence the estimation of tees based on next-gen data. Genome Biology and Evolution 5, 2082–2092.
Phylotranscriptomics: saturated third codon positions radically influence the estimation of tees based on next-gen data.Crossref | GoogleScholarGoogle Scholar | 24148944PubMed |

Carpenter, J. M. (1989). Testing scenarios: wasp social behavior. Cladistics 5, 131–144.
Testing scenarios: wasp social behavior.Crossref | GoogleScholarGoogle Scholar |

Carvalho, J. C. M. (1987). New genera and new species of Miridae from Papua New Guinea (Hemiptera). Revista Brasileira de Biologia 47, 177–187.

Cassis, G. (2008). The Lattinova complex of austromirine plant bugs (Hemiptera: Heteroptera: Miridae: Orthotylinae). Proceedings of the Entomological Society of Washington 110, 845–939.
The Lattinova complex of austromirine plant bugs (Hemiptera: Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Moulds, T. (2002). A systematic revision of the plantbug genus Kirkaldyella Poppius (Heteroptera: Miridae: Orthotylinae: Austromirini). Insect Systematics & Evolution 33, 53–90.
A systematic revision of the plantbug genus Kirkaldyella Poppius (Heteroptera: Miridae: Orthotylinae: Austromirini).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Schuh, R. T. (2012). Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annual Review of Entomology 57, 377–404.
Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha).Crossref | GoogleScholarGoogle Scholar | 22149267PubMed |

Cassis, G., and Symonds, C. (2014a). Systematics and host plant associations of a new genus of Acacia-inhabiting plant bugs from arid Australia (Insecta: Hemiptera: Heteroptera: Miridae: Orthotylinae). Invertebrate Systematics 28, 522–554.
Systematics and host plant associations of a new genus of Acacia-inhabiting plant bugs from arid Australia (Insecta: Hemiptera: Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Symonds, C. (2014b). Granitohyoidea calycopeplus gen. nov. and sp. nov: a new plant bug taxon (Heteroptera: Miridae) affiliated with granite outcrops in south-west Western Australia, and its Palearctic affinity and host plant associations. Austral Entomology 53, 353–362.
Granitohyoidea calycopeplus gen. nov. and sp. nov: a new plant bug taxon (Heteroptera: Miridae) affiliated with granite outcrops in south-west Western Australia, and its Palearctic affinity and host plant associations.Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Symonds, C. (2016). Plant bugs, plant interactions and the radiation of a species rich clade in south-western Australia: Naranjakotta, gen. nov. and eighteen new species (Insecta: Heteroptera: Miridae: Orthotylinae). Invertebrate Systematics 30, 95–186.
Plant bugs, plant interactions and the radiation of a species rich clade in south-western Australia: Naranjakotta, gen. nov. and eighteen new species (Insecta: Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., Wall, M. A., and Schuh, R. T. (2007). Insect biodiversity and industrialising the taxonomic process: the plant bug case study (Insecta: Heteroptera: Miridae). In ‘Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa’. (Eds T. R. Hodkinson, J. Parnell and S. Waldren.) pp. 193–212. (CRC Press: Boca Raton, FL.)

Cassis, G., Symonds, C., and Tatarnic, N. (2010). A remarkable new species of stone-dwelling Orthotylini (Heteroptera: Miridae: Orthotylinae) from Australia. Zootaxa 2485, 58–68.

Cheng, M., Mututantri, A., and Cassis, G. (2012a). Myrtlemiris, a new genus and new species of Australian plant bugs (Insecta: Heteroptera: Miridae): systematics, phylogeny and host associations. Systematic Entomology 37, 305–331.
Myrtlemiris, a new genus and new species of Australian plant bugs (Insecta: Heteroptera: Miridae): systematics, phylogeny and host associations.Crossref | GoogleScholarGoogle Scholar |

Cheng, M., Mututantri, A., and Cassis, G. (2012b). Myrtlemiris (a new genus of Australian plant bugs (Heteroptera: Miridae: Orthotylinae): systematics, host associations and exaggerated genitalic structures). In ‘Abstract, XXIV International Congress of Entomology, Daegu, South Korea’.

Chin, Y. W, and Cassis, G. (2018). Systematics and host plant associations of the Palassocoris complex (Insecta: Heteroptera: Miridae: Orthotylinae), a monophyletic suprageneric group of long-headed Australian Orthotylini, and the description of five new genera and ten new species. Invertebrate Systematics 32, 757.
Systematics and host plant associations of the Palassocoris complex (Insecta: Heteroptera: Miridae: Orthotylinae), a monophyletic suprageneric group of long-headed Australian Orthotylini, and the description of five new genera and ten new species.Crossref | GoogleScholarGoogle Scholar |

Damgaard, J., and Sperling, F. A. H. (2001). Phylogeny of the water strider genus Gerris Fabricius (Heteroptera: Gerridae) based on COI mtDNA, EF-1α nuclear DNA and morphology. Systematic Entomology 26, 241–254.
Phylogeny of the water strider genus Gerris Fabricius (Heteroptera: Gerridae) based on COI mtDNA, EF-1α nuclear DNA and morphology.Crossref | GoogleScholarGoogle Scholar |

Ebach, M. C., González-Orozco, C. E., Miller, J. T., and Murphy, D. J. (2015). A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas. Phytotaxa 208, 261–277.
A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas.Crossref | GoogleScholarGoogle Scholar |

Eyles, A. C. (2005). Revision of New Zealand Orthotylinae (Insecta: Hemiptera: Miridae). New Zealand Journal of Zoology 32, 181–215.
Revision of New Zealand Orthotylinae (Insecta: Hemiptera: Miridae).Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., and Catalano, S. A. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

González-Orozco, C. E., Ebach, M. C., Laffan, S., Thornhill, A. H., Knerr, N. J., Schmidt-Lebuhn, A. N., Cargill, C. C., Clements, M., Nagalingum, N. S., Mishler, B. D., and Miller, J. T. (2014). Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PLoS One 9, e92558.
Quantifying phytogeographical regions of Australia using geospatial turnover in species composition.Crossref | GoogleScholarGoogle Scholar | 24658356PubMed |

Ho, S. (2010). CodonSplit (Version 1.0). Available at http://sydney.edu.au/science/biology/meep/ [Accessed 2015].

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Menard, K. L., Schuh, R. T., and Woolley, J. B. (2014). Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini. Cladistics 30, 391–427.
Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini.Crossref | GoogleScholarGoogle Scholar |

Namyatova, A. A., Elias, M., and Cassis, G. (2011). A new genus and two new species of Orthotylinae (Hemiptera: Heteroptera: Miridae) from central Australia. Zootaxa 2927, 37–48.

Parenti, L. R., and Ebach, M. C. (2009). ‘Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth (Vol. 2).’ (University of California Press: Berkeley: CA.)

Preece, M., Harding, J., and West, J. G. (2015). Bush Blitz: journeys of discovery in the Australian outback. Australian Systematic Botany 27, 325–332.
Bush Blitz: journeys of discovery in the Australian outback.Crossref | GoogleScholarGoogle Scholar |

Schuh, R. T. (2003–2013). On-line Systematic Catalogue of Plant Bugs (Insecta: Heteroptera: Miridae). Available at http://research.amnh.org/pbi/catalog/ [Accessed 2015–2017].

Schuh, R. T., and Weirauch, C. (2010). Myrtaceae-feeding Phylinae (Hemiptera: Miridae) from Australia: description and analysis of phylogenetic and host relationships for a monophyletic assemblage of three new genera. Bulletin of the American Museum of Natural History 334, 1–95.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Group. Retrieved from http://www.mobot.org/MOBOT/research/APweb/ [Accessed 2016].

Symonds, C. L., and Cassis, G. (2018). Systematics and analysis of the radiation of Orthotylini plant bugs associated with Callitroid conifers in Australia: Description of five new genera and 32 new species (Heteroptera: Miridae: Orthotylinae). Bulletin of the American Museum of Natural History 422, 1–226.

Tatarnic, N. J., and Cassis, G. (2013). Surviving in sympatry: paragenital divergence and sexual mimicry between a pair of traumatically inseminating plant bugs. American Naturalist 182, 542–551.
Surviving in sympatry: paragenital divergence and sexual mimicry between a pair of traumatically inseminating plant bugs.Crossref | GoogleScholarGoogle Scholar | 24021406PubMed |

Wilson, P. G., O’Brien, M. M., Heslewood, M. M., and Quinn, C. J. (2005). Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |

Xiong, B., and Kocher, T. D. (1991). Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome 34, 306–311.
Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae).Crossref | GoogleScholarGoogle Scholar | 2055453PubMed |

Yasunaga, T., and Duwal, R. K. (2017). Plant bugs of the tribe Orthotylini (Heteroptera: Miridae: Orthotylinae) in Thailand, with descriptions of five new species. The Raffles Bulletin of Zoology 65, 280–298.