Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae : Mygalomorphae : Idiopidae): four new species distinguished by their burrow entrance architecture

Jeremy D. Wilson A C , Michael G. Rix B , Robert J. Raven B , Daniel J. Schmidt A and Jane M. Hughes A
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan, Qld 4111, Australia.

B Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Qld 4101, Australia.

C Corresponding author. Email: jeremy.wilson@griffithuni.edu.au

Invertebrate Systematics 33(2) 253-276 https://doi.org/10.1071/IS18014
Submitted: 15 February 2018  Accepted: 3 May 2018   Published: 4 April 2019

Abstract

Within the spiny trapdoor spider genus Euoplos Rainbow exists a group of species from south-eastern Queensland that create unusual ‘palisade’ burrow entrances. Despite their intriguing burrows, the group was only recently circumscribed, and all species within it were undescribed. In this study, by undertaking a molecular phylogenetic analysis of two mitochondrial markers and seven nuclear markers, we confirm that the palisade trapdoor spiders, here formally named the ‘turrificus-group’, are monophyletic. We further recognise four species based on morphological, molecular and behavioural characters: E. crenatus, sp. nov., E. goomboorian, sp. nov., E. thynnearum, sp. nov. and E. turrificus, sp. nov. Morphological taxonomic data for each species are presented alongside information on their distribution, habitat preferences and burrow architecture. A key to species within the turrificus-group is also provided. The unusual burrow entrances of these spiders, which project out from the surrounding substrate, are found to exhibit structural autapomorphies, which allow species-level identification. Consequently, we include features of burrow architecture in our key and species diagnoses. This provides a non-intrusive method for distinguishing species in the field. Finally, we conclude that all species within the turrificus-group are likely to represent short-range endemic taxa.

http://zoobank.org/urn:lsid:zoobank.org:pub:F2E042DC-DA14-4751-A48B-A367ABC272D9

Additional keywords: Arachnida, Arbanitinae, Australia, phylogeny.


References

Bond, J. E., Hendrixson, B. E., Hamilton, C. A., and Hedin, M. (2012). A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7, e38753.
A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology.Crossref | GoogleScholarGoogle Scholar | 22723885PubMed |

Bonnet, P. (1956). ‘Bibliographia Araneorum. Tome II (2me partie: C–F).’ (Douladore: Toulouse, France.)

Castalanelli, M. A., Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2017). Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae). Invertebrate Systematics 31, 492–505.
Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae).Crossref | GoogleScholarGoogle Scholar |

Cloudsley-Thompson, J. (1995). A review of the anti-predator devices of spiders. Bulletin of the British Arachnological Society 10, 81–96.

Coyle, F. A. (1994). Cladistic analysis of the species of the trapdoor spider genus Aliatypus (Araneae, Antrodiaetidae). The Journal of Arachnology 22, 218–224.

Coyle, F. A., and Icenogle, W. R. (1994). Natural history of the Californian trapdoor spider genus Aliatypus (Araneae, Antrodiaetidae). The Journal of Arachnology 22, 225–255.

De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |

Ferretti, N. (2015). Cladistic reanalysis and historical biogeography of the genus Lycinus Thorell, 1894 (Araneae: Mygalomorphae: Nemesiidae) with description of two new species from western Argentina. Zoological Studies (Taipei, Taiwan) 54, 1–15.
Cladistic reanalysis and historical biogeography of the genus Lycinus Thorell, 1894 (Araneae: Mygalomorphae: Nemesiidae) with description of two new species from western Argentina.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S. (2002). Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism amongst the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Hedin, M., and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41, 454–471.
Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.Crossref | GoogleScholarGoogle Scholar | 16815045PubMed |

Hedin, M., Carlson, D., and Coyle, F. (2015). Sky island diversification meets the multispecies coalescent–divergence in the spruce‐fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia. Molecular Ecology 24, 3467–3484.
Sky island diversification meets the multispecies coalescent–divergence in the spruce‐fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia.Crossref | GoogleScholarGoogle Scholar | 26011071PubMed |

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.

Leavitt, D. H., Starrett, J., Westphal, M. F., and Hedin, M. (2015). Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae). Molecular Phylogenetics and Evolution 91, 56–67.
Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).Crossref | GoogleScholarGoogle Scholar | 26025426PubMed |

Main, B. Y. (1957). Biology of aganippine trapdoor spiders (Mygalomorphae: Ctenizidae). Australian Journal of Zoology 5, 402–473.

Main, B. Y. (1964). ‘Spiders of Australia.’ (Jacaranda Press: Brisbane, Qld.)

Main, B. Y. (1982). Adaptations to arid habitats by mygalomorph spiders. In ‘Evolution of the Fora and Fauna of Arid Australia’. (Eds W. R. Barker and P. J. M. Greenslade.) pp. 273–283. (Peacock Publications in association with Australian Systematic Botany Society: Frewville, South Australia.)

Main, B. Y. (1985). Further studies on the systematics for Ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae). Australian Journal of Zoology Supplementary Series 33, 1–84.
Further studies on the systematics for Ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae).Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. pp. 1–8. (IEEE: Piscataway, NJ, USA.)

Petrunkevitch, A. (1928). Systema Aranearum. Transactions of the Connecticut Academy of Arts and Sciences 29, 1–270.

Rainbow, W. J. (1914). Studies in Australian Araneidae – no. 6. The Terretelariae. Records of the Australian Museum 10, 187–270.

Rainbow, W. J., and Pulleine, R. H. (1918). Australian trap-door spiders. Records of the Australian Museum 12, 81–169.

Rambaut, A., Suchard, M., Xie, W., and Drummond, A. (2014). Tracer v. 1.6. Available from http://beast.bio.ed.ac.uk/Tracer [Verified February 2018].

Raven, R. J. (1985). The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182, 1–180.

Raven, R. J., and Wishart, G. (2005). The trapdoor spider Arbanitis L. Koch (Idiopidae: Mygalomorphae) in Australia. Memoirs of the Queensland Museum 51, 531–557.

Rix, M. G., Bain, K., Main, B. Y., Raven, R. J., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2017a). Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape. The Journal of Arachnology 45, 395–423.
Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Cooper, S. J., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017b). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution 109, 302–320.
Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |

Rix, M. G., Raven, R. J., Main, B. Y., Harrison, S. E., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2017c). The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level. Invertebrate Systematics 31, 566–634.
The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Satler, J. D., Carstens, B. C., and Hedin, M. (2013). Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic Biology 62, 805–23.
Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 23771888PubMed |

Wiens, J. J., and Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology Evolution and Systematics 36, 519–539.
Niche conservatism: integrating evolution, ecology, and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., and Harrison, S. P. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13, 1310–1324.
Niche conservatism as an emerging principle in ecology and conservation biology.Crossref | GoogleScholarGoogle Scholar | 20649638PubMed |

Wilson, J. D., Hughes, J. M., Raven, R. J., Rix, M. G., and Schmidt, D. J. (2018). Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology. Molecular Phylogenetics and Evolution 122, 157–165.
Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology.Crossref | GoogleScholarGoogle Scholar | 29428510PubMed |