Does morphological diversity in amphidromous Macrobrachium (Decapoda: Caridea: Palaemonidae) reflect species homology or habitat partitioning?
Valentin de Mazancourt



A
B
C
D
Abstract
The taxonomy of the genus Macrobrachium, a group of mostly amphidromous shrimps inhabiting unstable streams on Indo-Pacific tropical islands, is based on several characters repeatedly associated with specific environments and stream velocities. This allows the identification of morphological traits that improve an organism’s stability in given flow conditions and an assessment of their monophyly. This study investigates whether the altitude-dependent distribution of certain Macrobrachium species – characterised by specific morphological traits – is phylogenetically constrained or a result of phenotypic plasticity. We first use an integrative taxonomy approach to assess species hypotheses based on ~200 individuals collected across the Indo-Pacific. We then construct multi-gene phylogenetic trees (65 individuals; 3–5 concatenated genes; 2711 bp) to explore the evolutionary origins of morphological similarities among closely related species. Our results support the species status of 30 Macrobrachium species, with 16 species exhibiting distinct morphologies and 14 species forming 5 species complexes. Phylogenetic and distribution patterns of closely related species suggest habitat-driven speciation, with species differentiating in similar environments across vast distances. This indicates that diversification can occur over large distances, yet still in sympatry within a given environment. Lastly, our findings suggest that the Macrobrachium body shape is derived from evolutionarily conserved adaptations to flow velocity.
Keywords: Crustacea, dispersal, distribution pattern, Indo-Pacific, integrative taxonomy, phenotypic plasticity, phylogeny, prawn, shrimp, species delineation.
References
Blob RW, Kawano SM, Moody KN, Bridges WC, Maie T, Ptacek MB, Julius ML, Schoenfuss HL (2010) Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni. Integrative and Comparative Biology 50(6), 1185-1199.
| Crossref | Google Scholar | PubMed |
Castelin M, Feutry P, Hautecoeur M, Marquet G, Wowor D, Zimmermann G, Keith P (2013) New insight on population genetic connectivity of widespread amphidromous prawn Macrobrachium lar (Fabricius, 1798) (Crustacea: Decapoda: Palaemonidae). Marine Biology 160, 1395-1406.
| Crossref | Google Scholar |
Castelin M, de Mazancourt V, Marquet G, Zimmerman G, Keith P (2017) Genetic and morphological evidence for cryptic species in Macrobrachium australe and resurrection of M. ustulatum (Crustacea, Palaemonidae). European Journal of Taxonomy 2017, 289.
| Crossref | Google Scholar |
Crandall ED, Taffel JR, Barber PH (2010) High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae). Heredity 104(6), 563-572.
| Crossref | Google Scholar | PubMed |
de Mazancourt V, Ravaux J (2024) Amphidromous shrimps (Decapoda: Caridea): current knowledge and future research. Journal of Crustacean Biology 44(1), ruae003.
| Crossref | Google Scholar |
de Mazancourt V, Marquet G, Keith P (2017) The “Pinocchio-shrimp effect”: first evidence of variation in rostrum length with the environment in Caridina H. Milne-Edwards, 1837 (Decapoda: Caridea: Atyidae). Journal of Crustacean Biology 37(3), 249-257.
| Crossref | Google Scholar |
de Mazancourt V, Klotz W, Marquet G, Mos B, Rogers DC, Keith P (2019) The complex study of complexes: the first well-supported phylogeny of two species complexes within genus Caridina (Decapoda: Caridea: Atyidae) sheds light on evolution, biogeography, and habitat. Molecular Phylogenetics and Evolution 131, 164-180.
| Crossref | Google Scholar | PubMed |
de Mazancourt V, Abdou A, Castelin M, Ellien C, Lord C, Mennesson M, Renneville C, Marquet G, Keith P (2023) Molecular ecology of the freshwater shrimp Caridina natalensis and comparative analysis with other amphidromous species (Decapoda, Teleostei, and Gastropoda). Hydrobiologia 850(18), 3997-4014.
| Crossref | Google Scholar |
Dimmock A, Williamson I, Mather P (2004) The influence of environment on the morphology of Macrobrachium australiense (Decapoda: Palaemonidae). Aquaculture International 12(4), 435-456.
| Crossref | Google Scholar |
Felgenhauer BE, Abele LG (1983) Ultrastructure and functional morphology of feeding and associated appendages in the tropical fresh-water shrimp Atya innocous (Herbst) with notes on its ecology. Journal of Crustacean Biology 3(3), 336-363.
| Crossref | Google Scholar |
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5), 294-299.
| Google Scholar |
García-Velazco H, Maeda-Martínez AM, Obregón-Barboza H, Ruiz-Campos G, Rodríguez-Almaraz GA, Murugan G (2021) The systematics of the amphidromous shrimp Macrobrachium americanum Spence Bate, 1868 (Decapoda: Caridea: Palaemonidae) from the Mexican Pacific slope. The Journal of Crustacean Biology 41(1), 1-16.
| Crossref | Google Scholar |
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.
| Google Scholar |
Holomuzki JR, Biggs BJ (2006) Habitat‐specific variation and performance trade‐offs in shell armature of New Zealand mudsnails. Ecology 87(4), 1038-1047.
| Crossref | Google Scholar | PubMed |
Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755.
| Crossref | Google Scholar | PubMed |
Jovelin R, Justine J-L (2001) Phylogenetic relationships within the polyopisthocotylean monogeneans (Platyhelminthes) inferred from partial 28S rDNA sequences. International Journal for Parasitology 31(4), 393-401.
| Crossref | Google Scholar |
Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26(15), 1899-1900.
| Crossref | Google Scholar | PubMed |
Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4), 1160-1166.
| Crossref | Google Scholar | PubMed |
Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6), 1695-1701.
| Crossref | Google Scholar |
Lord C, Lorion J, Dettai A, Watanabe S, Tsukamoto K, Cruaud C, Keith P (2012) From endemism to widespread distribution: phylogeography of three amphidromous Sicyopterus species (Teleostei: Gobioidei: Sicydiinae). Marine Ecology Progress Series 455, 269-285.
| Crossref | Google Scholar |
Mantelatto FL, Pileggi LG, Pantaleão J, Magalhães C, Villalobos JL, Álvarez F (2021) Multigene phylogeny and taxonomic revision of American shrimps of the genus Cryphiops Dana, 1852 (Decapoda, Palaemonidae) implies a proposal for reversal of precedence with Macrobrachium Spence Bate, 1868. ZooKeys 1047, 155-198.
| Crossref | Google Scholar | PubMed |
McDowall R (2007) On amphidromy, a distinct form of diadromy in aquatic organisms. Fish and Fisheries 8(1), 1-13.
| Crossref | Google Scholar |
Meza-Sánchez IG, Maeda-Martínez AM, Obregón-Barboza H, García-Velazco H, Rodríguez-Almaraz GA, Ruiz-Campos G, Murugan G (2024) The systematics of the amphidromous shrimp Macrobrachium tenellum (Smith, 1871) (Decapoda: Caridea: Palaemonidae) from the Mexican Pacific slope. Journal of Crustacean Biology 44(1), ruae013.
| Crossref | Google Scholar |
Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In ‘XSEDE ‘12: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: bridging from the extreme to the campus and beyond’, 16–20 July 2012, Chicago, IL, USA. Article 39. (Association for Computing Machinery: New York, NY, USA) 10.1145/2335755.2335836
Myers GS (1949) Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 1949(2), 89-97.
| Crossref | Google Scholar |
Pileggi LG, Mantelatto FL (2010) Molecular phylogeny of the freshwater prawn genus Macrobrachium (Decapoda, Palaemonidae), with emphasis on the relationships among selected American species. Invertebrate Systematics 24(2), 194-208.
| Crossref | Google Scholar |
Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21(2), 609-620.
| Crossref | Google Scholar | PubMed |
Rivera G (2008) Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integrative and Comparative Biology 48(6), 769-787.
| Crossref | Google Scholar | PubMed |
Short J (2004) A revision of Australian river prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae). Hydrobiologia 525(1), 1-100.
| Crossref | Google Scholar |
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312-1313.
| Crossref | Google Scholar | PubMed |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10), 2731-2739.
| Crossref | Google Scholar | PubMed |
Wowor D, Ng PK (2007) The giant freshwater prawns of the Macrobrachium rosenbergii species group (Crustacea: Decapoda: Caridea: Palaemonidae). The Raffles Bulletin of Zoology 55(2), 321-336.
| Google Scholar |
Wowor D, Ng PK (2008) Case 3428 Palaemon rosenbergii De Man, 1879 (currently Macrobrachium rosenbergii; Crustacea, Decapoda): proposed conservation of usage by designation of a neotype. The Bulletin of Zoological Nomenclature 65(4), 288-293.
| Crossref | Google Scholar |
Wowor D, Muthu V, Meier R, Balke M, Cai Y, Ng PK (2009) Evolution of life history traits in Asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis. Molecular Phylogenetics and Evolution 52(2), 340-350.
| Crossref | Google Scholar | PubMed |
Zimmermann G, Bosc P, Valade P, Cornette R, Améziane N, Debat V (2012) Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zoologica 93(4), 492-500.
| Crossref | Google Scholar |