Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematics of the Peripatopsis clavigera species complex (Onychophora : Peripatopsidae) reveals cryptic cladogenic patterning, with the description of five new species

Aaron Barnes https://orcid.org/0000-0002-3312-8700 A C , Till Reiss A B and Savel R. Daniels https://orcid.org/0000-0003-2956-3256 A
+ Author Affiliations
- Author Affiliations

A Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.

B Department of Applied Genetics, Free University of Berlin, Kaiserswerther Strasse 16–18, D-14195 Berlin, Germany.

C Corresponding author. Email: aaron.barnes88@gmail.com

Invertebrate Systematics 34(6) 569-590 https://doi.org/10.1071/IS19071
Submitted: 12 December 2019  Accepted: 7 April 2020   Published: 14 August 2020

Abstract

During the present study, DNA sequence data, gross morphology and scanning electron microscopy (SEM) were used to examine cryptic species boundaries in the velvet worm, Peripatopsis clavigera species complex, from the southern Cape Afrotemperate forest belt in South Africa. Sequence data were generated for the mitochondrial COI and the nuclear 18S rRNA loci and phylogenetically analysed using both a Bayesian inference and a maximum-likelihood approach. Both the COI data and the combined DNA sequence topology (COI+18S) revealed the presence of five clades within the Peripatopsis clavigera species complex, and revealed that specimens from Tulbagh were distantly related and represented a sixth clade. The evolutionary distinction of the five clades was corroborated to varying degrees by the four species-delimitation methods (ABGD, PTP, GMYC and STACEY); however, both the gross morphological data and the SEM provided limited diagnostic differences between the five clades. Furthermore, the COI haplotype network and phylogeographic analyses provided evidence of genetic isolation between lineages that are currently syntopic. The distribution of genealogically exclusive and widespread maternal lineages was atypical among velvet worms and did not reflect the general trend of genetic and geographical isolation. Instead, lineages exhibited admixture among localities, a result most likely due to fluctuations in climatic conditions affecting the southern Cape Afrotemperate forest during the Pliocene–Pleistocene period as evident from our divergence time estimations. Four novel, narrow-range endemic species – P. ferox, sp. nov., P. mellaria, sp. nov., P. edenensis, sp. nov. and P. mira, sp. nov. – are described within the P. clavigera species complex, whereas the Tulbagh specimens are described as P. tulbaghensis, sp. nov. Collectively, these results demonstrate that Peripatopsis likely contains several undescribed species.

Additional keywords: climatic amelioration, endemic, novel species, sympatry, velvet worm.


References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In ‘Proceedings of the 2nd International Symposium on Information Theory’, 2–8 September 1971, Armenia, USSR. (Eds B. N. Petrov, and F. Csaki.) pp. 267–281. (Akadémiai Kiadó: Budapest, Hungary.)

Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In ‘Selected Papers of Hirotugu Akaike’. pp. 199–213. (Springer: New York, NY, USA.)

Barnes, A., and Daniels, S. R. (2019). On the importance of fine‐scale sampling in detecting alpha taxonomic diversity among saproxylic invertebrates: a velvet worm (Onychophora: Opisthopatus amaxhosa) template. Zoologica Scripta 48, 243–262.
On the importance of fine‐scale sampling in detecting alpha taxonomic diversity among saproxylic invertebrates: a velvet worm (Onychophora: Opisthopatus amaxhosa) template.Crossref | GoogleScholarGoogle Scholar |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Boyer, S. L., Baker, J. M., and Giribet, G. (2007). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy.Crossref | GoogleScholarGoogle Scholar | 17944852PubMed |

Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar |

Busschau, T., Conradie, W., Jordaan, A., and Daniels, S. R. (2017). Unmasking evolutionary diversity among two closely related South African legless skink species (Acontinae: Acontias) using molecular data. Zoology 121, 72–82.
Unmasking evolutionary diversity among two closely related South African legless skink species (Acontinae: Acontias) using molecular data.Crossref | GoogleScholarGoogle Scholar | 28094083PubMed |

Busschau, T., Conradie, W., and Daniels, S. R. (2019). Evidence for cryptic diversification in a rupicolous forest-dwelling gecko (Gekkonidae: Afroedura pondolia) from a biodiversity hotspot. Molecular Phylogenetics and Evolution 139, 106549.
Evidence for cryptic diversification in a rupicolous forest-dwelling gecko (Gekkonidae: Afroedura pondolia) from a biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 31265890PubMed |

Clement, M., Posada, D., and Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 11050560PubMed |

Clouse, R. M., and Wheeler, W. C. (2014). Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates. Zootaxa 3814, 177–201.
Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates.Crossref | GoogleScholarGoogle Scholar |

Contreras-Félix, G. A., Montiel-Parra, G., Cupul-Magaña, F. G., and Pérez, T. M. (2018). Redescription of the velvet worm Oroperipatus eisenii (Onychophora: Peripatidae), through DNA sequencing, scanning electron microscopy and new collection records from western Mexico. Revista Mexicana de Biodiversidad 89, 1033–1044.
Redescription of the velvet worm Oroperipatus eisenii (Onychophora: Peripatidae), through DNA sequencing, scanning electron microscopy and new collection records from western Mexico.Crossref | GoogleScholarGoogle Scholar |

Cook, L. G., Edwards, R. D., Crisp, M. D., and Hardy, N. B. (2010). Need morphology always be required for new species descriptions? Invertebrate Systematics 24, 322–326.
Need morphology always be required for new species descriptions?Crossref | GoogleScholarGoogle Scholar |

Costa, C. S., Chagas-Junior, A., and Pinto-da-Rocha, R. (2018). Redescription of Epiperipatus edwardsii, and descriptions of five new species of Epiperipatus from Brazil (Onychophora: Peripatidae). Zoologia 35, 1–15.
Redescription of Epiperipatus edwardsii, and descriptions of five new species of Epiperipatus from Brazil (Onychophora: Peripatidae).Crossref | GoogleScholarGoogle Scholar |

Cunha, W. T., Santos, R. C., Araripe, J., Sampaio, I., Schneider, H., and Rêgo, P. S. (2017). Molecular analyses reveal the occurrence of three new sympatric lineages of velvet worms (Onychophora: Peripatidae) in the eastern Amazon basin. Genetics and Molecular Biology 40, 147–152.
Molecular analyses reveal the occurrence of three new sympatric lineages of velvet worms (Onychophora: Peripatidae) in the eastern Amazon basin.Crossref | GoogleScholarGoogle Scholar | 28257522PubMed |

Daniels, S. R. (2011). Genetic variation in the critically endangered velvet worm Opisthopatus roseus (Onychophora: Peripatopsidae). African Zoology 46, 419–424.
Genetic variation in the critically endangered velvet worm Opisthopatus roseus (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Daniels, S. R., and Ruhberg, H. (2010). Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): evidence for cryptic speciation. Journal of Zoology 282, 171–179.
Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): evidence for cryptic speciation.Crossref | GoogleScholarGoogle Scholar |

Daniels, S. R., Picker, M. D., Cowlin, R. M., and Hamer, M. L. (2009). Unravelling evolutionary lineages among South African velvet worms (Onychophora: Peripatopsis) provides evidence for widespread cryptic speciation. Biological Journal of the Linnean Society. Linnean Society of London 97, 200–216.
Unravelling evolutionary lineages among South African velvet worms (Onychophora: Peripatopsis) provides evidence for widespread cryptic speciation.Crossref | GoogleScholarGoogle Scholar |

Daniels, S. R., McDonald, D. E., and Picker, M. D. (2013). Evolutionary insight into the Peripatopsis balfouri sensu lato species complex (Onychophora: Peripatopsidae) reveals novel lineages and zoogeographic patterning. Zoologica Scripta 42, 656–674.

Daniels, S. R., Dambire, C., Klaus, S., and Sharma, P. P. (2016). Unmasking alpha diversity, cladogenesis and biogeographical patterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species. Cladistics 32, 506–537.
Unmasking alpha diversity, cladogenesis and biogeographical patterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species.Crossref | GoogleScholarGoogle Scholar |

Daniels, S. R., Dreyer, M., and Sharma, P. P. (2017). Contrasting the population genetic structure of two velvet worm taxa (Onychophora: Peripatopsidae: Peripatopsis) in forest fragments along the south-eastern Cape, South Africa. Invertebrate Systematics 31, 781–796.
Contrasting the population genetic structure of two velvet worm taxa (Onychophora: Peripatopsidae: Peripatopsis) in forest fragments along the south-eastern Cape, South Africa.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond, A. J., Ho, S. Y., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Edgecombe, G. D., and Giribet, G. (2008). A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence. Invertebrate Systematics 22, 1–15.
A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Eldredge, N., and Cracraft, J. (1980). ‘Phylogenetic Patterns and the Evolutionary Process.’ (Columbia University Press: New York, NY, USA.)

Engelbrecht, H., Heideman, N. J. L., van Niekerk, A., and Daniels, S. R. (2013). Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless fossorial skink, Acontias meleagris meleagris. Journal of Biogeography 40, 492–506.
Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless fossorial skink, Acontias meleagris meleagris.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., and Lischer, H. (2010). Arlequin Suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology 10, 564–567.
Arlequin Suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar |

Farrell, B. D. (2001). Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Molecular Phylogenetics and Evolution 18, 467–478.
Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles.Crossref | GoogleScholarGoogle Scholar | 11277638PubMed |

Felsenstein, J. (1985). Confidence limits on phylogenies, an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies, an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar | 28561359PubMed |

Ferguson, J. W. H. (2002). On the use of genetic divergence for identifying species. Biological Journal of the Linnean Society. Linnean Society of London 75, 509–516.
On the use of genetic divergence for identifying species.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Ecology 3, 294–299.

Fu, Y. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
| 9335623PubMed |

Funk, D. J., and Omland, K. E. (2003). Species‐level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 34, 397–423.
Species‐level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 8583909PubMed |

Giribet, G., Edgecombe, G. D., and Wheeler, W. C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157–161.
Arthropod phylogeny based on eight molecular loci and morphology.Crossref | GoogleScholarGoogle Scholar | 11557979PubMed |

Giribet, G., Buckman-Young, R. S., Costa, C. S., Baker, C. M., Benavides, L. R., Branstetter, M. G., Daniels, S. R., and Pinto-da-Rocha, R. (2018). The ‘Peripatos’ in Eurogondwana? Lack of evidence that South-East Asian onychophorans walked through Europe. Invertebrate Systematics 32, 842–865.
The ‘Peripatos’ in Eurogondwana? Lack of evidence that South-East Asian onychophorans walked through Europe.Crossref | GoogleScholarGoogle Scholar |

Halt, M. N., Kupriyanova, E. K., Cooper, S. J., and Rouse, G. W. (2009). Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate Systematics 23, 205–222.
Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology.Crossref | GoogleScholarGoogle Scholar |

Hamer, M. L., Samways, M. J., and Ruhberg, H. (1997). A review of the Onychophora of South Africa, with discussion of their conservation. Annals of the Natal Museum 38, 283–312.

Hamilton, C. A., Hendrixson, B. E., Brewer, M. S., and Bond, J. E. (2014). An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution 71, 79–93.
An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar | 24280211PubMed |

Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Billington, N., Finston, T. L., Boileau, M. G., Beaton, M. J., and Barrette, J. (1991). Genetic variation in the onychophoran Plicatoperipatus jamaicensis. Heredity 67, 221–229.
Genetic variation in the onychophoran Plicatoperipatus jamaicensis.Crossref | GoogleScholarGoogle Scholar |

Heled, J., and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570–580.
Bayesian inference of species trees from multilocus data.Crossref | GoogleScholarGoogle Scholar | 19906793PubMed |

Jacobs, S. J., Kristofferson, C., Uribe-Convers, S., Latvis, M., and Tank, D. C. (2018). Incongruence in molecular species delimitation schemes: what to do when adding more data is difficult. Molecular Ecology 27, 2397–2413.
Incongruence in molecular species delimitation schemes: what to do when adding more data is difficult.Crossref | GoogleScholarGoogle Scholar | 29701315PubMed |

Jones, G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74, 447–467.
Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent.Crossref | GoogleScholarGoogle Scholar | 27287395PubMed |

Jones, G., Aydin, Z., and Oxelman, B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31, 991–998.
DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent.Crossref | GoogleScholarGoogle Scholar | 25422051PubMed |

Jörger, K. M., and Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10, 59.
How to describe a cryptic species? Practical challenges of molecular taxonomy.Crossref | GoogleScholarGoogle Scholar | 24073641PubMed |

Klimov, P. B., Skoracki, M., and Bochkov, A. V. (2019). Cox 1 barcoding versus multilocus species delimitation: validation of two mite species with contrasting effective population sizes. Parasites & Vectors 12, 8.
Cox 1 barcoding versus multilocus species delimitation: validation of two mite species with contrasting effective population sizes.Crossref | GoogleScholarGoogle Scholar |

Lacorte, G. A., Oliveira, I. S., and Da Fonseca, C. G. (2011). Phylogenetic relationships among the Epiperipatus lineages (Onychophora: Peripatidae) from the Minas Gerais State, Brazil. Zootaxa 2755, 57–65.
Phylogenetic relationships among the Epiperipatus lineages (Onychophora: Peripatidae) from the Minas Gerais State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Lawes, M. J. (1990). The distribution of the samango monkey (Cercopithecus mitis erythrarchus Peters, 1852 and Cercopithecus mitis labiatus I. Geoffroy, 1843) and forest history in southern Africa. Journal of Biogeography 17, 669–680.
The distribution of the samango monkey (Cercopithecus mitis erythrarchus Peters, 1852 and Cercopithecus mitis labiatus I. Geoffroy, 1843) and forest history in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Lohse, K. (2009). Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Systematic Biology 58, 439–442.
Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006).Crossref | GoogleScholarGoogle Scholar | 20525596PubMed |

Luo, A., Ling, C., Ho, S. Y. W., and Zhu, C. D. (2018). Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67, 830–846.
Comparison of methods for molecular species delimitation across a range of speciation scenarios.Crossref | GoogleScholarGoogle Scholar | 29462495PubMed |

Mayr, E. (1942). ‘Systematics and the Origin of Species.’ (Columbia University Press: New York, NY, USA.)

McDonald, D. E., and Daniels, S. R. (2012). Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa. Journal of Evolutionary Biology 25, 824–835.
Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa.Crossref | GoogleScholarGoogle Scholar | 22409213PubMed |

McDonald, D. E., Ruhberg, H., and Daniels, S. R. (2012). Two new Peripatopsis species (Onychophora: Peripatopsidae) from the Western Cape province, South Africa. Zootaxa 3380, 55–68.
Two new Peripatopsis species (Onychophora: Peripatopsidae) from the Western Cape province, South Africa.Crossref | GoogleScholarGoogle Scholar |

McKay, B. D., and Zink, R. M. (2010). The causes of mitochondrial DNA gene tree paraphyly in birds. Molecular Phylogenetics and Evolution 54, 647–650.
The causes of mitochondrial DNA gene tree paraphyly in birds.Crossref | GoogleScholarGoogle Scholar | 19716428PubMed |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. pp. 1–8. (IEEE.)

Monge-Nájera, J. (1995). Phylogeny, biogeography and reproductive trends in the Onychophora. Zoological Journal of the Linnean Society 114, 21–60.
Phylogeny, biogeography and reproductive trends in the Onychophora.Crossref | GoogleScholarGoogle Scholar |

Mucina, L. M. C., and Rutherford, R. (2006). ‘The Vegetation of South Africa, Lesotho and Swaziland.’ (South African National Biodiversity Institute: Pretoria, South Africa.)

Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., and Giribet, G. (2014). A living fossil tale of Pangaean biogeography. Proceedings. Biological Sciences 281, 20132648.
A living fossil tale of Pangaean biogeography.Crossref | GoogleScholarGoogle Scholar | 24285200PubMed |

Murphy, N. P., King, R. A., and Delean, S. (2015). Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebrate Systematics 29, 457–467.
Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar |

Myburgh, A. M., and Daniels, S. R. (2015). Exploring the impact of habitat size on phylogeographic patterning in the Overberg velvet worm Peripatopsis overbergiensis (Onychophora: Peripatopsidae). The Journal of Heredity 106, 296–305.
Exploring the impact of habitat size on phylogeographic patterning in the Overberg velvet worm Peripatopsis overbergiensis (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar | 25838152PubMed |

Nelson, G., and Platnick, N. I. (1981). ‘Systematics and Biogeography: Cladistics and Vicariance.’ (Columbia University Press: New York, NY, USA.)

Oliveira, I. S., Wieloch, A. H., and Mayer, G. (2010). Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters. Zootaxa 2493, 16–34.
Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Lacorte, G. A., Fonseca, C. G., Wieloc, A. H., and Mayer, G. (2011). Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among peripatid velvet worms. PLoS One 6, e19973.
Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among peripatid velvet worms.Crossref | GoogleScholarGoogle Scholar | 21695250PubMed |

Oliveira, I. S., Read, V. M. S. J., and Mayer, G. (2012a). A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211, 1–70.
A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Franke, F. A., Hering, L., Schaffer, S., Rowell, D. M., Weck-Heimann, A., Monge-Nájera, J., Morera-Brenes, B., and Mayer, G. (2012b). Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PLoS One 7, e51220.
Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 9918953PubMed |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012a). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Puillandre, N., Modica, M. V., Zhang, Y., Sirovich, L., Boisselier-Dubayle, M. C., Cruaud, C., Holford, M., and Samadi, S. (2012b). Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21, 2671–2691.
Large-scale species delimitation method for hyperdiverse groups.Crossref | GoogleScholarGoogle Scholar | 22494453PubMed |

Pyron, R. A., Costa, G. C., Patten, M. A., and Burbrink, F. T. (2015). Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews of the Cambridge Philosophical Society 90, 1248–1262.
Phylogenetic niche conservatism and the evolutionary basis of ecological speciation.Crossref | GoogleScholarGoogle Scholar | 25428167PubMed |

Reid, A. L. (1996). Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebrate Taxonomy 10, 663–936.
Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships.Crossref | GoogleScholarGoogle Scholar |

Reid, N. M., and Carstens, B. C. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12, 196.
Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model.Crossref | GoogleScholarGoogle Scholar | 23031350PubMed |

Renner, S. S. (2016). A return to Linnaeus’s focus on diagnosis, not description: the use of DNA characters in the formal naming of species. Systematic Biology 65, 1085–1095.
A return to Linnaeus’s focus on diagnosis, not description: the use of DNA characters in the formal naming of species.Crossref | GoogleScholarGoogle Scholar | 27146045PubMed |

Rockman, M. V., Rowell, D. M., and Tait, N. N. (2001). Phylogenetics of Planipapillus, lawn headed onychophorans of the Australian Alps, based on nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 21, 103–116.
Phylogenetics of Planipapillus, lawn headed onychophorans of the Australian Alps, based on nuclear and mitochondrial gene sequences.Crossref | GoogleScholarGoogle Scholar | 11603941PubMed |

Ronquist, F., Huelsenbeck, J. P., Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Hohna, S., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Ruhberg, H. (1985). Die Peripatopsidae (Onychophora). Systematik, Ökologie, Chorologie und phylogenetische Aspekte. Zoologica 137, 1–183.

Ruhberg, H., and Daniels, S. R. (2013). Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi (Onychophora: Peripatopsidae). Invertebrate Systematics 27, 131–145.
Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Sato, S., Buckman-Young, R. S., Harvey, M. S., and Giribet, G. (2018). Cryptic speciation in a biodiversity hotspot: multilocus molecular data reveal new velvet worm species from Western Australia (Onychophora: Peripatopsidae: Kumbadjena). Invertebrate Systematics 32, 1249–1264.
Cryptic speciation in a biodiversity hotspot: multilocus molecular data reveal new velvet worm species from Western Australia (Onychophora: Peripatopsidae: Kumbadjena).Crossref | GoogleScholarGoogle Scholar |

Schumann, I., Kenny, N., Hui, J., Hering, L., and Mayer, G. (2018). Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa. Royal Society Open Science 5, 180888.
Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa.Crossref | GoogleScholarGoogle Scholar | 30839709PubMed |

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51, 492–508.
An approximately unbiased test of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar | 12079646PubMed |

Shimodaira, H., and Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116.
Multiple comparisons of log-likelihoods with applications to phylogenetic inference.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Strand, M., and Sundberg, P. (2011). A DNA-based description of a new nemertean (phylum Nemertea) species. Marine Biology Research 7, 63–70.
A DNA-based description of a new nemertean (phylum Nemertea) species.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. (2002). ‘PAUP* Phylogenetic Analysis using Parsimony (and other methods). Version 4.10.’ (Illinois Natural History Survey: Champaign, IL, USA.)

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 9396791PubMed |

Tomasello, S. (2018). How many names for a beloved genus? Coalescent-based species delimitation in Xanthium L. (Ambrosiinae, Asteraceae). Molecular Phylogenetics and Evolution 127, 135–145.
How many names for a beloved genus? Coalescent-based species delimitation in Xanthium L. (Ambrosiinae, Asteraceae).Crossref | GoogleScholarGoogle Scholar | 29800650PubMed |

Trewick, S. A. (2000). Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Molecular Ecology 9, 269–281.
Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora).Crossref | GoogleScholarGoogle Scholar | 10736025PubMed |

Trewick, S. A., and Wallis, G. P. (2001). Bridging the ‘beech-gap’: New Zealand invertebrate phylogeography implicates Pleistocene glaciation and Pliocene isolation. Evolution 55, 2170–2180.
| 11794778PubMed |

Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar | 27084950PubMed |

Vitecek, S., Kučinić, M., Previšić, A., Živić, I., Stojanović, K., Keresztes, L., Bálint, M., Hoppeler, F., Waringer, J., Graf, W., and Pauls, S. U. (2017). Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics. BMC Evolutionary Biology 17, 129.
Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics.Crossref | GoogleScholarGoogle Scholar | 28587671PubMed |

White, F. (1978) The Afromontane Region. In ‘Biogeography and Ecology of Southern Africa’ (Ed. M. J. A. Werger.) Vol. 31, pp. 463–560. (Springer Netherlands: The Hague, Netherlands.) 10.1007/978-94-009-9951-0_11

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 23990417PubMed |

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, USA.