Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The phylogeny and systematics of the Costellariidae (Caenogastropoda: Turbinelloidea) revisited

Alexander Fedosov https://orcid.org/0000-0002-8035-1403 A B * , Philippe Bouchet https://orcid.org/0000-0001-5864-8676 B , Aart Dekkers C , Sandro Gori D , Shih-I Huang E , Yuri Kantor https://orcid.org/0000-0002-3209-4940 F , Thomas Lemarcis B , Maxwell Marrow G , Claudia Ratti B , Gary Rosenberg H , Richard Salisbury I , Sofia Zvonareva F and Nicolas Puillandre B
+ Author Affiliations
- Author Affiliations

A Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, SE-10405 Stockholm, Sweden.

B Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 43 rue Cuvier, CP 51, F-75005 Paris, France.

C NL-1448 NR Purmerend, Netherlands.

D Livorno, Italy.

E Taichung, 40861, Taiwan.

F A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, 119071 Moscow, Russian Federation.

G Beaumaris, Vic. 3193, Australia.

H Malacology Department, Academy of Natural Sciences, Philadelphia, PA, USA.

I Orma J, Smith Museum of Natural History, College of Idaho, Caldwell, ID, USA.

* Correspondence to: fedosovalexander@gmail.com

Handling Editor: Tauana Cunha

Invertebrate Systematics 39, IS24101 https://doi.org/10.1071/IS24101
Submitted: 10 December 2024  Accepted: 24 May 2025  Published: 3 July 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The marine neogastropod family Costellariidae constitutes a large radiation encompassing 647 living species, widely distributed in tropical seas, with their highest diversity in the Central Indo-Pacific. The systematics of the family has undergone profound changes in the mid-2010s, when relationships within Costellariidae were critically revised based on molecular (multilocus) data from 80 species. Whereas four new genera were described, and two more transferred to Costellariidae from Ptychatractidae, relationships of some key lineages could not be resolved due to the incomplete taxonomic and geographic coverage. In the present study we combine an analysis of an extensive DNA-barcoding dataset with phylogenomics to propose a robust new phylogenetic hypothesis and revise the genus-level systematics of the family. Species delimitation was performed for a Cox1 dataset of 1475 specimens, which revealed 221 secondary species hypotheses (SSHs). The phylogeny was reconstructed from a 1003 loci dataset for 70 species representing all but two of the revealed major costellariid lineages. Maximum likelihood (ML) and Bayesian inference (BI) arrived at nearly identical topologies with full support for all backbone nodes but one, providing a robust framework for a new classification. We treat Turricostellaria as a synonym of Tosapusia. Further, based on a re-evaluation of the identity of the type species of Pusia, we conclude that the name should be applied to a Caribbean lineage, previously treated as a part of Vexillum. Consequently, the Indo-Pacific species of Pusia (Pusia) are here reassigned to a new genus Eupusia, and two other subgenera, Ebenomitra and Vexillena, are raised to full genera. Eight further new genera are described based on phylogenomics: Bathythala, Canaripusia and Caribbonus from the Caribbean in deep water, Pilgrivexillum, Pacifilux, Ponderiola and Cernohorskyola from the Central and southern Indo-Pacific, and Kilburniola from the south-western Indian Ocean. From a total of 25 SSHs corresponding to undescribed species, 23 are described herein in the genera Austromitra (1), Bathythala (1), Canaripusia (1), Caribbonus (3), Costapex (4), Eupusia (1), Kilburniola (1), Pilgrivexillum (1), Pusia (2), Thala (1), Tosapusia (1) and Vexillum (6).

ZooBank: urn:lsid:zoobank.org:pub:0791EF1F-7F77-4F02-A447-40798388C7FE

Keywords: Caribbean, DNA-barcoding, Indo-Pacific, integrative taxonomy, marine molluscs, new genus, new species, ribbed mitres.

References

Abbott RT, Dance SP (1982) ‘Compendium of seashells: a full-color guide to more than 4,200 of the World’s marine shells.’ (Odyssey Publishing: El Cajon, CA, USA)

Adams CB (1845) Specierum novarum conchyliorum, in Jamaica repertorum, synopsis. Proceedings of the Boston Society of Natural History 2, 1-17 [In English with taxonomic descriptions in Latin].
| Google Scholar |

Adams A (1853) Description of fifty-two new species of the genus Mitra, from the Cumingian collection. Proceedings of the Zoological Society of London 19, 132-141.
| Crossref | Google Scholar |

Anton HE (1838) ‘Verzeichniss der Conchylien welche sich in der Sammlung von Herrmann Eduard Anton befinden. Herausgegeben von dem Besitzer’. (Anton.: Halle) [In German]

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19, 455-477.
| Crossref | Google Scholar | PubMed |

Bouchet P (1990) Turrid genera and mode of development: the use and abuse of protoconch morphology. Malacologia 32, 69-77.
| Google Scholar |

Bouchet P, Kantor Y (2004) New Caledonia: the major centre of biodiversity for volutomitrid molluscs (Mollusca: Neogastropoda: Volutomitridae). Systematics and Biodiversity 1, 467-502.
| Crossref | Google Scholar |

Bouchet P, Decock W, Lonneville B, Vanhoorne B, Vandepitte L (2023) Marine biodiversity discovery: the metrics of new species descriptions. Frontiers in Marine Science 10, 929989.
| Crossref | Google Scholar |

Cernohorsky WO (1969) The types of the Lamarck collection in the Museum d’Histoire Naturelle in Geneva. Recent Mollusca of the genera Mitra, Columbella (part) and Cancellaria (part). Revue Suisse de Zoologie 76, 953-994.
| Google Scholar | PubMed |

Cernohorsky WO (1970) Systematics of the families Mitridae and Volutomitridae. Bulletins of the Auckland Institute and Museum 8, 1-190.
| Google Scholar |

Cernohorsky WO (1976) The taxonomy of some Indo-Pacific Mollusca. Part 4. With descriptions of new taxa and remarks on Nassarius coppingeri (Smith). Records of the Auckland Institute and Museum 13, 111-129.
| Google Scholar |

Cernohorsky WO (1982) Description of a new species of Vexillum (Costellaria) (Mollusca: Gastropoda) from the West Pacific Ocean. Records of the Auckland Institute and Museum 19, 109-112.
| Google Scholar |

Cossmann M (1899) ‘Essais de paléoconchologie comparée, 3.’ (Comptoir Géologique: Paris, France) [In French]

Fedosov A (2025) The phylogeny and systematics of the Costellariidae (Caenogastropoda: Turbinelloidea) revisited. Zenodo 2025, ver. 1 [Dataset, published 24 June 2025].
| Crossref | Google Scholar |

Fedosov AE, Kantor YI (2010) Evolution of carnivorous gastropods of the family Costellariidae (Neogastropoda) in the framework of molecular phylogeny. Ruthenica 20, 117-139.
| Google Scholar |

Fedosov AE, Puillandre P, Kantor YI, Bouchet P (2015) Phylogeny and systematics of mitriform gastropods (Mollusca: Gastropoda: Neogastropoda). Zoological Journal of the Linnaean Society 175, 336-359.
| Crossref | Google Scholar |

Fedosov AE, Puillandre N, Herrmann M, Dgebuadze P, Bouchet P (2017) Phylogeny, systematics and evolution of the family Costellariidae (Gastropoda: Neogastropoda). Zoological Journal of the Linnean Society 179, 541-626.
| Google Scholar |

Fedosov A, Achaz G, Gontchar A, Puillandre N (2022) MOLD, a novel software to compile accurate and reliable DNA diagnoses for taxonomic descriptions. Molecular Ecology Resources 22, 2038-2053.
| Crossref | Google Scholar | PubMed |

Fedosov AE, Zaharias P, Lemarcis T, Modica MV, Holford M, Oliverio M, Kantor YI, Puillandre N (2024) Phylogenomics of Neogastropoda: the backbone hidden in the bush. Systematic Biology 73, 521-531.
| Crossref | Google Scholar | PubMed |

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294-299.
| Google Scholar | PubMed |

Galindo LA, Puillandre N, Strong EE, Bouchet P (2014) Using microwaves to prepare gastropods for DNA barcoding. Molecular Ecology Resources 14, 700-705.
| Crossref | Google Scholar | PubMed |

Gori S, Rosado J, Salisbury RA (2019) Costellariidae (Gastropoda) from Dhofar, Oman with descriptions of eight new species and notes on Vexillum appelii (Jickeli, 1874). Acta Conchyliorum 18, 25-48.
| Google Scholar |

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7), 644-652.
| Crossref | Google Scholar | PubMed |

Hain S (1990) Die beschalten benthischen Mollusken (Gastropoda und Bivalvia) des Weddellmeeres, Antarktis. Berichte zur Polarforschung 70, 1-180 [In German].
| Google Scholar |

Harasewych MG, Uribe JE, Fedosov AE (2020) Costapex baldwinae, a new species of bathyal costellariid (Mollusca: Gastropoda: Neogastropoda: Costellariidae) from the Caribbean Sea. Proceedings of the Biological Society of Washington 133, 134-141.
| Crossref | Google Scholar |

Hou Z, Li S (2018) Tethyan changes shaped aquatic diversification. Biological Reviews of the Cambridge Philosophical Society 93, 874-896.
| Crossref | Google Scholar | PubMed |

Huang S-I (2015) New Costellariidae (Mollusca: Gastropoda) from Taiwan and the North Atlantic Ocean. Visaya 4(4), 43-53.
| Google Scholar |

Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Research 9(9), 868-877.
| Crossref | Google Scholar | PubMed |

Jackson JBC, Jung P, Coates AG, Collins LS (1993) Diversity and extinction of tropical American mollusks and emergence of the isthmus of Panama. Science 260(5114), 1624-1626.
| Crossref | Google Scholar | PubMed |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |

Kantor YI, Puillandre N (2012) Evolution of the radular apparatus in Conoidea (Gastropoda: Neogastropoda) as inferred from a molecular phylogeny. Malacologia 55, 55-90.
| Crossref | Google Scholar |

Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630-1638.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Kuznetsova KG, Zvonareva SS, Ziganshin R, Mekhova ES, Dgebuadze P, Yen DTH, Nguyen THT, Moshkovskii SA, Fedosov AE (2022) Vexitoxins: conotoxin-like venom peptides from predatory gastropods of the genus Vexillum. Proceedings of the Royal Society of London – B. Biological Sciences 289, 20221152.
| Crossref | Google Scholar | PubMed |

Lamarck JBM (1811) Suite de la détermination des espèces de Mollusques testacés. Mitre (Mitra). Annales du Muséum National d’Histoire Naturelle 17, 195-222 [In French].
| Google Scholar |

Landau B, Harzhauser M (2024) The Pliocene Gastropoda (Mollusca) of Estepona, southern Spain. Part 25: Mitroidea and Turbinelloidea (Neogastropoda). Cainozoic Research 24(2), 189-230.
| Google Scholar |

Lartillot N, Rodrigue N, Stubbs D, Richer J (2013) PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology 62, 611-615.
| Crossref | Google Scholar | PubMed |

Lemarcis T, Blin A, Cariou M, Derzelle A, Farhat S, Fedosov A, Zaharias P, Zuccon D, Puillandre N (2025) Too far from relatives? Impact of the genetic distance on the success of exon capture in phylogenomics. Molecular Ecology Resources 25, e14064.
| Crossref | Google Scholar | PubMed |

Li W, Godzik A (2006) CD-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658-1659.
| Crossref | Google Scholar | PubMed |

Linnaeus C (1758) ‘Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis’, vol. 1, 10th edn. (Impensis Direct, Laurentii Salvii: Holmiae [Stockholm]) [In Latin]

Lussi M (2015) Description of three new species of Austromitra with a revision of the genus occurring in South Africa (Neogastropoda: Muricoidea: Costellariidae). Malacologia Mostra Mondiale 88, 18-25.
| Google Scholar |

Maes VO, Raeihle D (1975) Systematics and biology of Thala floridana (Gastropoda: Vexillidae). Malacologia 15, 43-67.
| Google Scholar |

Marshall BA, Marrow MP (2021) The living Austromitra species of New Zealand (Gastropoda: Neogastropoda: Costellariidae). Novapex 22(3), 51-73.
| Google Scholar |

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530-1534.
| Crossref | Google Scholar | PubMed |

MolluscaBase (Eds) (2021) Costellariidae MacDonald, 1860. In ‘MolluscaBase’. Available at https://molluscabase.org/aphia.php?p=taxdetails&id=23151 [Verified 20 November 2024]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Oliverio M, Modica MV (2010) Relationships of the haematophagous marine snail Colubraria (Rachiglossa, Colubrariidae), within the neogastropod phylogenetic framework. Zoological Journal of the Linnean Society 158, 779-800.
| Crossref | Google Scholar |

Pardos-Blas JR, Irisarri I, Abalde S, Afonso CML, Tenorio MJ, Zardoya R (2021) The genome of the venomous snail Lautoconus ventricosus sheds light on the origin of conotoxin diversity. GigaScience 10(5), giab037.
| Crossref | Google Scholar | PubMed |

Pechar P, Prior C, Parkinson B (1980) ‘Mitre shells from the Pacific and Indian Oceans.’ (Robert Brown & Associates: Bathurst, NSW, Australia)

Petuch EJ (1987) ‘New Caribbean molluscan faunas.’ (The Coastal Education and Research Foundation: Charlottesville, VA, USA)

Phuong MA, Mahardika GN (2018) Targeted sequencing of venom genes from cone snail genomes improves understanding of conotoxin molecular evolution. Molecular Biology and Evolution 35(5), 1210-1224.
| Crossref | Google Scholar | PubMed |

Ponder WF (1972) The morphology of some mitriform gastropods with special reference to their alimentary canal and reproductive systems (Mollusca: Neogastropoda). Malacologia 11, 295-342.
| Google Scholar |

Ponder WF (1973) The origin and evolution of the Neogastropoda. Malacologia 12, 295-338.
| Google Scholar | PubMed |

Ponder WF (1998) Family Costellariidae. In ‘Mollusca: the Southern Synthesis. Fauna of Australia, Vol. 5’. (Ed. PL Beesley) pp. 843–845. (CSIRO Publishing: Melbourne, Vic., Australia)

Poppe GT, Tagaro SP (2011) ‘Philippine Marine Mollusks Vol. 4.’ (ConchBooks: Hackenheim, Germany)

Poppe GT, Tagaro SP, Martin JC (2008) Costellariidae. In ‘Philippine Marine Mollusks Vol. 2, Gastropoda Part 2’. pp. 252–329. (ConchBooks: Hackenheim, Germany)

Poppe GT, Tagaro S, Salisbury RA (2009) New species of Mitridae and Costellariidae from the Philippines. Visaya Suppl. 4, 1-86.
| Google Scholar |

Puillandre N, Fedosov AE, Zaharias P, Aznar-Cormano L, Kantor YI (2017) A quest for the lost types of Lophiotoma (Gastropoda: Conoidea: Turridae): integrative taxonomy in a nomenclatural mess. Zoological Journal of the Linnean Society 181, 243-271.
| Crossref | Google Scholar |

Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609-620.
| Crossref | Google Scholar | PubMed |

Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F (2018) MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Molecular Biology and Evolution 35, 2582-2584.
| Crossref | Google Scholar | PubMed |

Reeve LA (1845) Monograph of the genus Mitra. In ‘Conchologia Iconica, or, illustrations of the shells of molluscous animals. Vol. 2’. (L. Reeve & Co.: London, UK)

Robin A, Martin C-C (2004) ‘Mitridae Costellariidae.’ (ConchBooks: Hackenheim, Germany)

Rosenberg G, Salisbury RA (2003) On Mitromica and Thala (Gastropoda: Costellariidae) with descriptions of new species from the Western Atlantic and the Indo-Pacific. Notulae Naturae 478, 1-30.
| Google Scholar |

Salisbury RA, Gori S, Rosado J (2024) Costellariidae (Gastropoda) from Mozambique with the description of 10 new Indo-Pacific species. Visaya Suppl. 19, 3-116.
| Google Scholar |

Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Golding GB, Hajibabaei M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Scientific Reports 5, 9687.
| Crossref | Google Scholar |

Simone LRL (2011) Phylogeny of the Caenogastropoda (Mollusca), based on comparative morphology. Arquivos de Zoologia 42, 161-323.
| Crossref | Google Scholar |

Simone LRL, Cunha CM (2012) Taxonomic study on the molluscs collected in Marion-Dufresne expedition (MD55) to SE Brazil: Xenophoridae, Cypraeoidea, mitriforms and Terebridae (Caenogastropoda). Zoosystema 34(4), 745-781.
| Crossref | Google Scholar |

Sowerby GB II (1874) Monograph of the genus Mitra. In ‘Thesaurus conchyliorum, or monographs of genera of shells. Vol. 4 (31–32)’. (Ed. GB Sowerby II) pp. 1–46. (Privately published: London, UK)

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690.
| Crossref | Google Scholar | PubMed |

Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38, 3022-3027.
| Crossref | Google Scholar | PubMed |

Teasdale LC, Köhler F, Murray KD, O’Hara T, Moussalli A (2016) Identification and qualification of 500 nuclear, single copy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon capture. Molecular Ecology Resources 16(5), 1107-1123.
| Crossref | Google Scholar | PubMed |

Thiele J (1929) ‘Handbuch der Systematischen Weichtierkunde. Vol. 1.’ (Gustave Fischer: Jena, German Republic) [In German]

Todd JA, Johnson KG (2013) Dissecting a marine snail species radiation (Conoidea: Turridae: Polystira). Over 12 million years in the southwestern Caribbean. Bulletin of Marine Science 89, 877-904.
| Crossref | Google Scholar |

Todd JA, Jackson JBC, Johnson KG, Fortunato HM, Heitz A, Alvarez M, Jung P (2002) The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London – B. Biological Sciences 269, 571-577.
| Crossref | Google Scholar | PubMed |

Turner H (2008) New species of the family Costellariidae from the Indian and Pacific Oceans (Gastropoda: Neogastropoda: Muricoidea). Archiv für Molluskenkunde 137(1), 105-125.
| Crossref | Google Scholar |

Turner H, Gori S, Salisbury RA (2007) Costellariidae (Gastropoda) of the Maldive Islands, with descriptions of nine new species. Vita Malacologica 5, 1-48.
| Google Scholar |

Walton K, Scarsbrook L, Mitchell KJ, Verry AJF, Marshall BA, Rawlence NJ, Spencer HG (2023) Application of palaeogenetic techniques to historic mollusc shells reveals phylogeographic structure in a New Zealand abalone. Molecular Ecology Resources 23, 118-130.
| Crossref | Google Scholar | PubMed |

Wilson B (1994) ‘Australian marine shells. Vol. 2: Neogastropoda.’ (Odyssey Publishing: Perth, WA, Australia)

Zaharias P, Kantor YI, Fedosov AE, Puillandre N (2024) Coupling DNA barcodes and exon-capture to resolve the phylogeny of Turridae (Gastropoda, Conoidea). Molecular Phylogenetics and Evolution 191, 107969.
| Crossref | Google Scholar | PubMed |

Zancolli G, Modica MV, Puillandre N, Kantor YI, Barua A, Campli G, Robinson-Rechavi M (2025) Redistribution of ancestral functions underlies the evolution of venom production in marine predatory snails. Molecular Biology and Evolution 42(5), msaf095.
| Crossref | Google Scholar |

Zou S, Li Q, Kong L (2011) Additional gene data and increased sampling give new insights into the phylogenetic relationships of Neogastropoda, within the caenogastropod phylogenetic framework. Molecular Phylogenetics and Evolution 61, 425-435.
| Crossref | Google Scholar | PubMed |