Paedomorphic adaptations in a new Heterostigma species: a novel strategy for ascidians to live in soft-bottom habitats
Riccardo Virgili
A
B
C
D
E
F
Abstract
Inhabiting soft substrates presents complex challenges for some groups of sessile filter feeders. Among these, ascidians have independently evolved traits and strategies to live in such habitats. Paedomorphosis, the retention of juvenile features of the ancestor into the adult stage, has been associated with taxa living freely within the sediment, including species of the pyurid genus Heterostigma Ärnbäck-Christie-Linde, 1924 (Ascidiacea: Stolidobranchia: Pyuridae). These poorly known solitary ascidians display peculiar morphological adaptations deemed for an interstitial lifestyle, although complete knowledge of their biology is still lacking. We hereby describe Heterostigma monniotae sp. nov., a new pyurid species from the littoral soft bottoms of Napoli (central Tyrrhenian Sea, Mediterranean Sea). An updated taxonomic table, built on the literature and the screening of types and unpublished material, clarified differences within the known species of the genus. Multilocus phylogenetic analyses based on single genes and the complete mitochondrial genome of the new species provided the first molecular information on this group and resolved its position as sister to the other Stolidobranchia. Finally, morphological and behavioural acquired adaptations were observed in live specimens of H. monniotae, revealing the shift from a sessile to a paedomorphic motile phenotype in mature specimens. This adaptive strategy was never documented before in sessile ascidians, appearing as an extreme strategy to survive in unstable habitats, although its inducing factors are still unclear. The motility of adults was filmed here for the first time. These findings challenge previous assumptions of these species’ lifestyle and behaviour, contributing to the understanding of the development and ecology of this group of sand-living ascidians. Finally, the comparison with closely related species highlighted how ontogenetic processes may have contributed to the radiation of sand-living tunicates.
ZooBank: urn:lsid:zoobank.org:pub:FBC89E26-9213-4E40-81D1-36E686B118FC
Keywords: ascidian motility, complete mitochondrial genome, DNA barcoding, integrative systematics, interstitial lifestyle, meiofauna, new species, ontogenetic shift, paedomorphosis, Tunicata.
References
Alié A, Hiebert LS, Simion P, Scelzo M, Prünster MM, Lotito S, Delsuc F, Douzery EJP, Dantec C, Lemaire P, Darras S, Kawamura K, Brown FD, Tiozzo S (2018) Convergent acquisition of nonembryonic development in styelid ascidians. Molecular Biology and Evolution 35, 1728-1743.
| Crossref | Google Scholar | PubMed |
Ärnbäck-Christie-Linde A (1924) A remarkable pyurid tunicate from Novaya Zemlya. Arkiv För Zoologi 16, 1-7.
| Google Scholar |
Ärnbäck-Christie-Linde A (1928) IX. Tunicata. 3. Molgulidae and Pyuridae. Kungliga Svenska Vetenskapsakademiens Handlingar 4, 1-101.
| Google Scholar |
Bates WR (2005) Environmental factors affecting reproduction and development in ascidians and other protochordates. Canadian Journal of Zoology 83, 51-61.
| Crossref | Google Scholar |
Bergsten J (2005) A review of long-branch attraction. Cladistics 21, 163-193.
| Crossref | Google Scholar | PubMed |
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69, 313-319.
| Crossref | Google Scholar | PubMed |
Berrill NJ (1931) VI. Studies in tunicate development. Part II. Abbreviation of development in the Molgulidae. Philosophical Transactions of the Royal Society of London – B. Containing Papers of a Biological Character 219, 281-346.
| Crossref | Google Scholar |
Brozovic M, Dantec C, Dardaillon J, Dauga D, Faure E, Gineste M, Louis A, Naville M, Nitta KR, Piette J, Reeves W, Scornavacca C, Simion P, Vincentelli R, Bellec M, Aicha SB, Fagotto M, Guéroult-Bellone M, Haeussler M, Jacox E, Lowe EK, Mendez M, Roberge A, Stolfi A, Yokomori R, Brown CT, Cambillau C, Christiaen L, Delsuc F, Douzery E, Dumollard R, Kusakabe T, Nakai K, Nishida H, Satou Y, Swalla B, Veeman M, Volff J-N, Lemaire P (2018) ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research 46, D718-D725.
| Crossref | Google Scholar | PubMed |
Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Laboratory. LBNL Report number LBNL-7065E. (US Department of Energy, Joint Genome Institute) Available at https://escholarship.org/uc/item/1h3515gn
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
| Crossref | Google Scholar | PubMed |
Carreras-Carbonell J, Macpherson E, Pascual M (2005) Rapid radiation and cryptic speciation in Mediterranean triplefin blennies (Pisces: Tripterygiidae) combining multiple genes. Molecular Phylogenetics and Evolution 37, 751-761.
| Crossref | Google Scholar | PubMed |
Chan PP, Lin BY, Mak AJ, Lowe TM (2021) tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Research 49, 9077-9096.
| Crossref | Google Scholar | PubMed |
DeBiasse MB, Colgan WN, Harris L, Davidson B, Ryan JF (2020) Inferring tunicate relationships and the evolution of the tunicate Hox cluster with the genome of Corella inflata. Genome Biology and Evolution 12, 948-964.
| Crossref | Google Scholar | PubMed |
Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak MK, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJP (2018) A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology 16, 39.
| Crossref | Google Scholar | PubMed |
Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45, e18.
| Crossref | Google Scholar | PubMed |
D’Onorio de Meo P, D’Antonio M, Griggio F, Lupi R, Borsani M, Pavesi G, Castrignanò T, Pesole G, Gissi C (2012) MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Research 40, D1168-D1172.
| Crossref | Google Scholar | PubMed |
Gissi C, Pesole G, Mastrototaro F, Iannelli F, Guida V, Griggio F (2010) Hypervariability of ascidian mitochondrial gene order: exposing the myth of deuterostome organelle genome stability. Molecular Biology and Evolution 27, 211-215.
| Crossref | Google Scholar | PubMed |
Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47, W59-W64.
| Crossref | Google Scholar | PubMed |
Griggio F, Voskoboynik A, Iannelli F, Justy F, Tilak MK, Turon X, Pesole G, Douzery EJ, Mastrototaro F, Gissi C (2014) Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events. Genome Biology and Evolution 6, 591-605.
| Crossref | Google Scholar | PubMed |
Iannelli F, Griggio F, Pesole G, Gissi C (2007) The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level. BMC Evolutionary Biology 7, 155.
| Crossref | Google Scholar | PubMed |
Jackson JBC (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. The American Naturalist 111, 743-767.
| Crossref | Google Scholar |
Kocot KM, Tassia MG, Halanych KM, Swalla BJ (2018) Phylogenomics offers resolution of major tunicate relationships. Molecular Phylogenetics and Evolution 121, 166-173.
| Crossref | Google Scholar | PubMed |
Kott P (1989) Form and function in the Ascidiacea. Bulletin of Marine Science 45, 253-276.
| Google Scholar |
Kück P, Meusemann K (2010) FASconCAT: convenient handling of data matrices. Molecular Phylogenetics and Evolution 56, 1115-1118.
| Crossref | Google Scholar | PubMed |
Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172-175.
| Crossref | Google Scholar | PubMed |
Machida RJ, Knowlton N (2012) PCR Primers for metazoan nuclear 18S and 28S ribosomal DNA sequences. PLoS ONE 7, e46180.
| Crossref | Google Scholar | PubMed |
Martynov A, Lundin K, Korshunova T (2022) Ontogeny, phylotypic periods, paedomorphosis, and ontogenetic systematics. Frontiers in Ecology and Evolution 10, 806414.
| Crossref | Google Scholar |
Mastrototaro F, Montesanto F, Salonna M, Viard F, Chimienti G, Trainito E, Gissi C (2020) An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society 190, 1193-1216.
| Crossref | Google Scholar |
Meng G, Li Y, Yang C, Liu S (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research 47, e63.
| Crossref | Google Scholar | PubMed |
Millar RH (1959) Ascidiacea. Galathea Report 1, 189-209.
| Google Scholar |
Millar RH (1971) The Biology of Ascidians. Advances in Marine Biology 9, 1-100.
| Crossref | Google Scholar |
Monniot F (1965a) Ascidies intersticielles des côtes d’Europe. Mémoires du Muséum national d’histoire naturelle, Série A Zoologie 35, 1-154 [In French].
| Google Scholar |
Monniot C (1965b) Etude systématique et évolutive de la famille des Pyuridae (Ascidiacea). Mémoires du Muséum national d’histoire naturelle, Série A Zoologie 36, 1-203 [In French].
| Google Scholar |
Monniot C (1969) Ascidies récoltées par la « Thalassa » sur la pente du plateau continental du golfe de Gascogne (3-12 août 1967). Bulletin du Muséum national d’histoire naturelle, 2 série 41, 155-186 [In French].
| Google Scholar |
Monniot F (1971) Les ascidies littorales et profondes des sédiments meubles. Proceedings of the 1st International Conference on Meiofauna. Smithsonian Contributions to Zoology 76, 119-126 [In French].
| Google Scholar |
Monniot C, Monniot F (1961) Recherches sur les ascidies interstitielles des gravelles à Amphioxus (2ème note). Vie Milieu 12, 269-283 [In French].
| Google Scholar |
Monniot C, Monniot F (1963) Presence a Bergen et Roscoff de Pyuridae psammicoles du genre Heterostigma. Sarsia 13, 51-57 [In French].
| Crossref | Google Scholar |
Monniot F, Monniot C (1975) Sept espèces d’ascidies profondes de Méditérranée. Bulletin du Muséum national d’histoire naturelle, 3 série 330, 1117-1133 [In French].
| Crossref | Google Scholar |
Naranjo SA, García-Gómez JC (1993) The arctic species Heterostigma separ Ärnbäck-Christie-Linde, 1924 (Ascidiacea: Pyuridae) in the strait of Gibraltar (southern Spain). Beaufortia 43, 116-123.
| Google Scholar |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Research 27, 824-834.
| Crossref | Google Scholar | PubMed |
Okonechnikov K, Golosova O, Fursov M, the UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166-1167.
| Crossref | Google Scholar | PubMed |
Pérès JM (1958) Ascidies de la baie de Haifa collectées par E. Gottlieb. Bulletin of the Research Council of Israel 7B, 151-164 [In French].
| Google Scholar |
Pérez-Portela R, Bishop JD, Davis AR, Turon X (2009) Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 50, 560-570.
| Crossref | Google Scholar | PubMed |
Piraino S, Boero F, Aeschbach B, Schmid V (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). The Biological Bulletin 190, 302-312.
| Crossref | Google Scholar | PubMed |
Ramos-Esplà AA, Turon X, Lafargue F (1988) Cratostigma campoyi n.sp. (Ascidiacea, Pyuridae) en Méditerranée Occidentale. Observations sur le genre Cratostigma C. et F. Monniot, 1961. Vie Milieu 38, 95-100 [In French].
| Google Scholar |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539-542.
| Crossref | Google Scholar | PubMed |
Rubinstein ND, Feldstein T, Shenkar N, Botero-Castro F, Griggio F, Mastrototaro F, Delsuc F, Douzery EJ, Gissi C, Huchon D (2013) Deep sequencing of mixed total DNA without barcodes allows efficient assembly of highly plastic ascidian mitochondrial genomes. Genome Biology and Evolution 5, 1185-1199.
| Crossref | Google Scholar | PubMed |
Rundell RJ, Leander BS (2010) Masters of miniaturization: convergent evolution among interstitial eukaryotes. BioEssays 32, 430-437.
| Crossref | Google Scholar | PubMed |
Salonna M, Gasparini F, Huchon D, Montesanto F, Haddas-Sasson M, Ekins M, McNamara M, Mastrototaro F, Gissi C (2021) An elongated COI fragment to discriminate botryllid species and as an improved ascidian DNA barcode. Scientific Reports 11, 4078.
| Crossref | Google Scholar | PubMed |
Sanamyan K, Sanamyan N (2021) Nomenclatural status of Pyuridae and Bolteniidae (Tunicata, Ascidiacea) with comments on several included genera. Bionomina 24, 9-18.
| Crossref | Google Scholar |
Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS ONE 6, e20657.
| Crossref | Google Scholar | PubMed |
Soto-Angel JJ, Burkhardt P (2024) Reverse development in the ctenophore Mnemiopsis leidyi. Proceedings of the National Academy of Sciences 121, e2411499121.
| Crossref | Google Scholar | PubMed |
The Galaxy Community (2022) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50, W345-W351.
| Crossref | Google Scholar | PubMed |
Vázquez E, Ramos-Esplà AA (1993) Cratostigma intermedia n. sp. (Ascidiacea, Pyuridae), une nouvelle espèce des côtes atlantiques ibériques. Bulletin du Muséum national d’histoire naturelle 4, 1-4 [In French].
| Google Scholar |
Virgili R, Tanduo V, Katsanevakis S, Terlizzi F, Villani G, Fontana A, Crocetta F (2022) The Miseno Lake (central–western Mediterranean Sea): an overlooked reservoir of non-indigenous and cryptogenic ascidians in a marine reserve. Frontiers in Marine Science 9, 866906.
| Crossref | Google Scholar |
Virgili R, Poliseno A, Fujita T, Pratama GA, Fernández-Silva I, Reimer JD (2023) Molecular phylogeny of the genus Dorometra Clark, 1917 (Crinoidea: Comatulida: Antedonidae): a new genus and new insights for future taxonomic revisions of Antedonidae. Systematics and Biodiversity 21, 2192209.
| Crossref | Google Scholar |
Virgili R, Tanduo V, D’Aniello S, Fontana A, Turon X, Crocetta F (2025) Supplementary Video – Paedomorphic adaptations in a new Heterostigma species: a novel strategy for ascidians to live in soft-bottom habitats. Zenodo 2025, version v1 [Supplementary video, published 19 May 2025].
| Crossref | Google Scholar |