High-throughput molecular typing of microbes using the Sequenom Massarray platform
David Whiley A B E , Ella Trembizki A B , Melanie Syrmis A B , Jenny Nakos C , Cheryl Bletchly C , Michael Nissen A B C , Graeme Nimmo C D and Theo P Sloots A B CA Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, Qld 4029, Australia
B Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Qld 4029, Australia
C Pathology Queensland Central Laboratory, Herston, Qld 4029, Australia
D Griffith University School of Medicine, Southport, Qld 4215, Australia
E Corresponding author. Tel: +61 7 3636 1623, Fax: +61 7 3636 1401, Email: d.whiley@uq.edu.au
Microbiology Australia 34(4) 175-177 https://doi.org/10.1071/MA13058
Published: 10 October 2013
Abstract
The advent of newer technologies, including next-generation sequencing (NGS) and matrix assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS), have continued to drive a considerable renaissance in microbial molecular typing methods. The Sequenom Massarray iPLEX single nucleotide polymorphism (SNP) typing platform (
References
[1] Leushner, J. and Chiu, N.H. (2000) Automated mass spectrometry: a revolutionary technology for clinical diagnostics. Mol. Diagn. 5, 341–348.| 1:CAS:528:DC%2BD3MXls1Gmsg%3D%3D&md5=6521f99794bee79f37c173c722bfdf1bCAS | 11172498PubMed |
[2] Syrmis, M.W. et al. (2011) Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 17, 1804–1810.
| Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlWitA%3D%3D&md5=024a05fe039c597dd185b69e0d0b974dCAS | 21595795PubMed |
[3] Syrmis, M.W. et al. (2013) High-throughput single-nucleotide polymorphism-based typing of shared Pseudomonas aeruginosa strains in cystic fibrosis patients using the Sequenom iPLEX platform. J. Med. Microbiol. 62, 734–740.
| High-throughput single-nucleotide polymorphism-based typing of shared Pseudomonas aeruginosa strains in cystic fibrosis patients using the Sequenom iPLEX platform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFCmsbg%3D&md5=26932e5d91e17621905fd9b69954f7e3CAS | 23412772PubMed |
[4] Wieser, A. et al. (2012) MALDI-TOF MS in microbiological diagnostics – identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 93, 965–974.
| 1:CAS:528:DC%2BC38Xht1Wru7s%3D&md5=358e6b917b78f7bbab5ee18a0441897eCAS | 22198716PubMed |
[5] Dunne, W.M. et al. (2012) Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1719–1726.
| Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsb%2FO&md5=ccfc8a23eafbb057e67a238524afcbbaCAS | 22678348PubMed |
[6] Boers, S.A. et al. (2012) High-throughput multilocus sequence typing: bringing molecular typing to the next level. PLoS ONE 7, e39630.
| High-throughput multilocus sequence typing: bringing molecular typing to the next level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2msbrE&md5=274bd60901c6ccd43c0bdfb709409f49CAS | 22815712PubMed |