Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Gastrointestinal microbiota, diet and brain functioning

Shakuntla Gondalia A B and Andrew Scholey A
+ Author Affiliations
- Author Affiliations

A Centre for Human Psychopharmacology, School of Health Science, Swinburne University of Technology, Hawthorn, Vic. 3122, Australia

B Corresponding author. Tel: +61 3 9214 5100
Email: sgondalia@swin.edu.au

Microbiology Australia 36(1) 25-28 https://doi.org/10.1071/MA15008
Published: 6 March 2015

Abstract

A growing interest for research in the relationship between the gastrointestine (GI), GI microbiota, health and disease is due to the potential for research identifying intervention strategies. Preclinical and clinical studies have indicated that initial colonisation of bacteria in the GI tract can affect the individual's health condition in later life. Diet is an influential factor in modulating this complex ecosystem and consequently can help to modulate physiological conditions. The broader role of the GI microbiota in modulation of pathology and physiology of various diseases has pointed to the importance of bidirectional communication between the brain and the GI microbiota in maintaining homeostasis. An association of diet with metabolic diseases is well known and there are dietary supplements reported to improve brain function and cognitive decline. In addition to the plausible mechanisms of inflammation and oxidative stress for psychological conditions, more research into the role of the GI microbiota in combination with dietary factors as a component in psychological condition is warranted. From this work, targeted interventions could result.


References

[1]  Scholtens, P.A.M.J. et al. (2012) The early settlers: intestinal microbiology in early life. Annu. Rev. Food. Sci. Technol. 3, 425–447.
The early settlers: intestinal microbiology in early life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Wgsbs%3D&md5=682b73ce4e2e0627a9d605820cfe08efCAS |

[2]  Dominguez-Bello, M.G. et al. (2011) Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140, 1713–1719.
Development of the human gastrointestinal microbiota and insights from high-throughput sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVGhs7c%3D&md5=420a7c2da2269568756b61eb8ad4bd19CAS | 21530737PubMed |

[3]  Hooper, L.V. and Gordon, J.I. (2001) Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.
Commensal host-bacterial relationships in the gut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Chtbk%3D&md5=9f65f1cd2d5276fd861a72df42c4a3cdCAS | 11352068PubMed |

[4]  Clemente, J.C. et al. (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270.
The impact of the gut microbiota on human health: an integrative view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Gmsbk%3D&md5=7bf93481681269473a08a0c7a1efab6eCAS | 22424233PubMed |

[5]  Heijtz, R.D. et al. (2011) Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108, 3047–3052.
Normal gut microbiota modulates brain development and behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVans7k%3D&md5=615fbdf80f99c691b361d489d8d36bacCAS |

[6]  Desbonnet, L. et al. (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170, 1179–1188.
Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cls7vF&md5=8cb3fe20e1886a918a64f47c1275f8e4CAS | 20696216PubMed |

[7]  Souza, D.G. et al. (2004) The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J. Immunol. 173, 4137–4146.
The essential role of the intestinal microbiota in facilitating acute inflammatory responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVWku7o%3D&md5=ba4f94a7b0ef03e17d21007938ad4dceCAS | 15356164PubMed |

[8]  Samuel, B.S. et al. (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA 105, 16 767–16 772.
Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlersrvP&md5=2968dad45f2460b5f16d015e922e4829CAS |

[9]  Lovat, L.B. (1996) Age related changes in gut physiology and nutritional status. Gut 38, 306–309.
Age related changes in gut physiology and nutritional status.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ks12hsw%3D%3D&md5=4b52c5c7e3fd8622008d1efa1102df2eCAS | 8675079PubMed |

[10]  Claesson, M.J. et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184.
Gut microbiota composition correlates with diet and health in the elderly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKiur%2FP&md5=c5fdcc4a3e9c2d871e9462f151bcff02CAS | 22797518PubMed |

[11]  Cummings, J.H. and Macfarlane, G.T. (1991) The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459.
The control and consequences of bacterial fermentation in the human colon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFWjtbg%3D&md5=71b9844ac0dae0703d4021687ef029b8CAS | 1938669PubMed |

[12]  Harmsen, H.J.M. et al. (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61–67.
Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FpsVWgtQ%3D%3D&md5=1ea6852cc34bd8f651b50954b5a942e7CAS |

[13]  Penders, J. et al. (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521.
Factors influencing the composition of the intestinal microbiota in early infancy.Crossref | GoogleScholarGoogle Scholar | 16882802PubMed |

[14]  Sghir, A. et al. (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66, 2263–2266.
Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtV2ks7k%3D&md5=c2af136ed9e839de37cba1eb9b0a6cd6CAS | 10788414PubMed |

[15]  Agans, R. et al. (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol. Ecol. 77, 404–412.
Distal gut microbiota of adolescent children is different from that of adults.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVyrtb8%3D&md5=6f4d647dcf971fe38858452ff7e72c81CAS | 21539582PubMed |

[16]  Lakshminarayanan, B. et al. (2013) Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly irish subjects. J. Med. Microbiol. 62, 457–466.
Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly irish subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslSltbk%3D&md5=a0d84ad7717eda65848dc5b1bf31a2e6CAS | 23222860PubMed |

[17]  Wall, R. et al. (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am. J. Clin. Nutr. 95, 1278–1287.
Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmtlymsbs%3D&md5=fefc41af48a906cf67ff48b75453fb54CAS | 22492373PubMed |

[18]  Wall, R. et al. (2010) Impact of administered Bifidobacterium on murine host fatty acid composition. Lipids 45, 429–436.
Impact of administered Bifidobacterium on murine host fatty acid composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Wnsr4%3D&md5=02e1a95ffa8e05f70eebb4bf39c292f4CAS | 20405232PubMed |

[19]  Ohland, C.L. et al. (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38, 1738–1747.
Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVKgu7c%3D&md5=a9bc9ccdc3cda4f699b73b700be4b8ceCAS | 23566632PubMed |

[20]  Wells, C.L. et al. (1988) Role of intestinal anaerobic bacteria in colonization resistance. Eur. J. Clin. Microbiol. Infect. Dis. 7, 107–113.
Role of intestinal anaerobic bacteria in colonization resistance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3kt1GksQ%3D%3D&md5=32d32f72e44c38dc2517e825f6e5f51dCAS | 3132368PubMed |

[21]  Miene, C. et al. (2011) Impact of polyphenol metabolites produced by colonic microbiota on expression of COX-2 and GSTT2 in human colon cells (LT97). Nutr. Cancer 63, 653–662.
Impact of polyphenol metabolites produced by colonic microbiota on expression of COX-2 and GSTT2 in human colon cells (LT97).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlaiu7s%3D&md5=1f2e414060d26a680e4c6bc9e794c753CAS | 21598179PubMed |

[22]  Donohoe, D.R. et al. (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526.
The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFalsro%3D&md5=f9993728cdd26e2c9ebec2af181d3dceCAS | 21531334PubMed |

[23]  Topping, D.L. and Clifton, P.M. (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064.
| 1:CAS:528:DC%2BD3MXlt1Ohsr4%3D&md5=a4c2a4d7bd70049a46d9e6e89440a00eCAS | 11427691PubMed |

[24]  Musso, G. et al. (2011) Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380.
Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVWhtb0%3D&md5=ab0432a2dafc2000a7cf3518b1b0969eCAS | 21226616PubMed |

[25]  Cantarel, B.L. et al. (2012) Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE 7, e28742.
Complex carbohydrate utilization by the healthy human microbiome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVOjs7Y%3D&md5=8d852400f91ae034bf334c9cccea6459CAS | 22719820PubMed |

[26]  Xu, J. et al. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076.
A genomic view of the human-Bacteroides thetaiotaomicron symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlCisL0%3D&md5=e3e62c74fd837aeae72ecaa7435147a8CAS | 12663928PubMed |

[27]  Carbonero, F. et al. (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 3, 448.
Microbial pathways in colonic sulfur metabolism and links with health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ejtLbF&md5=bade0fa449051e85d6f87a2ecc2a2b80CAS | 23226130PubMed |

[28]  Desbonnet, L. et al. (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43, 164–174.
The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat.Crossref | GoogleScholarGoogle Scholar | 18456279PubMed |

[29]  Schéle, E. et al. (2013) The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (GCG) and brain-derived neurotrophic factor (BDNF) in the central nervous system. Endocrinology 154, 3643–3651.
The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (GCG) and brain-derived neurotrophic factor (BDNF) in the central nervous system.Crossref | GoogleScholarGoogle Scholar | 23892476PubMed |

[30]  Gruninger, T.R. et al. (2007) Molecular signaling involved in regulating feeding and other mitivated behaviors. Mol. Neurobiol. 35, 1–19.
Molecular signaling involved in regulating feeding and other mitivated behaviors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVWmsL4%3D&md5=1d1faa03d56acc6aa86912f62b9f3163CAS | 17519503PubMed |

[31]  Franceschi, C. et al. (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105.
Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWqug%3D%3D&md5=ec0f0d1341100470b84a2933a64355a1CAS | 17116321PubMed |

[32]  Piya, M.K. et al. (2013) Metabolic endotoxaemia: is it more than just a gut feeling? Curr. Opin. Lipidol. 24, 78–85.
Metabolic endotoxaemia: is it more than just a gut feeling?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlWksA%3D%3D&md5=b00d6e6feceddaaa95abdc1d60e1e0fbCAS | 23298961PubMed |

[33]  Bercik, P. et al. (2011) The anxiolytic effect of Bifidobacterium longum ncc3001 involves vagal pathways for gut–brain communication. Neurogastroenterol. Motil. 23, 1132–1139.
The anxiolytic effect of Bifidobacterium longum ncc3001 involves vagal pathways for gut–brain communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Kmuw%3D%3D&md5=69508f7e32f8e8c109e662f15ddd7f3eCAS | 21988661PubMed |