Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Navigating phylogenetic conflict and evolutionary inference in plants with target-capture data

E. M. Joyce https://orcid.org/0000-0001-8291-8058 A * , A. N. Schmidt-Lebuhn https://orcid.org/0000-0002-7402-8941 B , H. K. Orel https://orcid.org/0000-0001-7971-8709 C , F. J. Nge https://orcid.org/0000-0002-0361-8709 D , B. M. Anderson E , T. A. Hammer https://orcid.org/0000-0003-3816-7933 F G and T. G. B. McLay C H I *
+ Author Affiliations
- Author Affiliations

A Systematik, Biodiversität und Evolution der Pflanzen, Ludwig-Maximilians-Universität München, Menzinger Straße 67, D-80638 Munich, Germany.

B Centre for Australian National Biodiversity Research (a joint venture of Parks Australia and CSIRO), Clunies Ross Street, Canberra, ACT 2601, Australia.

C School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia.

D National Herbarium of New South Wales, Botanic Gardens of Sydney, Locked Bag 6002, Mount Annan, NSW 2567, Australia.

E Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, WA 6983, Australia.

F School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

G State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA 5000, Australia.

H National Biodiversity DNA Library, Environomics, CSIRO, Parkville, Vic. 3010, Australia.

I Royal Botanic Gardens Victoria, Melbourne, Vic. 3004, Australia.

* Correspondence to: e.joyce@lmu.de, todd.mclay@csiro.au

Handling Editor: Caroline Puente-Lelievre

Australian Systematic Botany 38, SB24011 https://doi.org/10.1071/SB24011
Submitted: 15 May 2024  Accepted: 7 March 2025  Published: 7 May 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC)

Abstract

Target capture has rapidly become a preferred approach for plant systematic and evolutionary research, marking a step change in the generation of data for phylogenetic inference. Although this advancement has facilitated the resolution of many relationships, phylogenetic conflict continues to be reported and is often attributed to genome duplication, reticulation, incomplete lineage sorting or rapid speciation – common processes in plant evolution. The proliferation of methods for analysing target-capture data in the presence of these processes can be overwhelming for many researchers, especially students. In this review, we break down the causes of conflict and guide researchers through a target-capture bioinformatic workflow, with a particular focus on robust phylogenetic inference in the presence of conflict. Through the workflow, we highlight key considerations for reducing artefactual conflict, managing paralogs and assessing conflict, and discuss current methods for investigating causes of conflict. Although we draw from examples in the Australian flora, this review is broadly relevant for any researcher working with target-capture data. We conclude that conflict is often inherent in plant phylogenomic datasets, and, although further methodological development is needed, when conflict is carefully investigated, target-capture data can provide unprecedented insight into the extraordinary evolutionary histories of plants.

Keywords: Angiosperms353, deep coalescence, discordance, GAP, Genomics for Australian Plants, hybridisation, HybSeq, incomplete lineage sorting, incongruence, PAFTOL, paralogy, polyploidy, polytomy, target enrichment.

References

Aberer AJ, Kobert K, Stamatakis A (2014) ExaBayes: massively parallel bayesian tree inference for the whole-genome era. Molecular Biology and Evolution 31, 2553-2556.
| Crossref | Google Scholar | PubMed |

Aïnouche M, Wendel J (2014) Polyploid speciation and genome evolution: lessons from recent allopolyploids. In ‘Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life’. (Ed. P Pontarotti) pp. 87–113. (Springer: Cham, Switzerland) 10.1007/978-3-319-07623-2_5

Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison J (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany 120, 183-194.
| Crossref | Google Scholar | PubMed |

Almeida-Silva F, Van de Peer Y (2023) Whole-genome duplications and the long-term evolution of gene regulatory networks in angiosperms. Molecular Biology and Evolution 40, msad141.
| Crossref | Google Scholar | PubMed |

Andermann T, Cano , Zizka A, Bacon C, Antonelli A (2018) SECAPR—a bioinformatics pipeline for the rapid and user-friendly processing of targeted enriched Illumina sequences, from raw reads to alignments. PeerJ 6, e5175.
| Crossref | Google Scholar |

Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A (2020) A guide to carrying out a phylogenomic target sequence capture project. Frontiers in Genetics 10, 1407.
| Crossref | Google Scholar | PubMed |

Ané C, Larget B, Baum DA, Smith SD, Rokas A (2007) Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution 24, 412-426.
| Crossref | Google Scholar | PubMed |

Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology 55, 539-552.
| Crossref | Google Scholar | PubMed |

Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, McDonnell A, Pokorny L, Tate JA, Wicke S, Wickett NJ (2021) Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants. American Journal of Botany 108, 1059-1065.
| Crossref | Google Scholar | PubMed |

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 19, 455-477.
| Crossref | Google Scholar | PubMed |

Barba-Montoya J, Tao Q, Kumar S (2021) Assessing rapid relaxed-clock methods for phylogenomic dating. Genome Biology and Evolution 13, evab251.
| Crossref | Google Scholar | PubMed |

Baum DA (2007) Concordance trees, concordance factors, and the exploration of reticulate genealogy. TAXON 56, 417-426.
| Crossref | Google Scholar |

Blair C, Ané C (2020) Phylogenetic trees and networks can serve as powerful and complementary approaches for analysis of genomic data. Systematic Biology 69, 593-601.
| Crossref | Google Scholar | PubMed |

Blischak PD, Chifman J, Wolfe AD, Kubatko LS (2018) HyDe: a Python package for genome-scale hybridization detection. Systematic Biology 67, 821-829.
| Crossref | Google Scholar | PubMed |

Bloesch Z, Nauheimer L, Elias Almeida T, Crayn D, Field AR (2022) HybPhaser identifies hybrid evolution in Australian Thelypteridaceae. Molecular Phylogenetics and Evolution 173, 107526.
| Crossref | Google Scholar | PubMed |

Bolnick DI (2006) Multi-species outcomes in a common model of sympatric speciation. Journal of Theoretical Biology 241, 734-744.
| Crossref | Google Scholar | PubMed |

Bomblies K (2020) When everything changes at once: finding a new normal after genome duplication. Proceedings of the Royal Society of London – B. Biological Sciences 287, 20202154.
| Crossref | Google Scholar | PubMed |

Borowiec ML (2016) AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4, e1660.
| Crossref | Google Scholar | PubMed |

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
| Crossref | Google Scholar | PubMed |

Boussau B, Scornavacca C (2020) Reconciling gene trees with species trees. In ‘Phylogenetics in the Genomic Era’. (Eds C Scornavacca, F Delsuc, N Galtier) pp. 3.2:1–3.2:23. (Published by the authors, CC BY-NC-ND) Available at https://hal.science/hal-02535529

Bradican JP, Tomasello S, Boscutti F, Karbstein K, Hörandl E (2023) Phylogenomics of southern European taxa in the Ranunculus auricomus species complex: the apple doesn’t fall far from the tree. Plants 12, 3664.
| Crossref | Google Scholar | PubMed |

Breinholt JW, Carey SB, Tiley GP, Davis EC, Endara L, McDaniel SF, Neves LG, Sessa EB, Von Konrat M, Chantanaorrapint S, Fawcett S, Ickert-Bond SM, Labiak PH, Larraín J, Lehnert M, Lewis LR, Nagalingum NS, Patel N, Rensing SA, Testo W, Vasco A, Villarreal JC, Williams EW, Burleigh JG (2021) A target enrichment probe set for resolving the flagellate land plant tree of life. Applications in Plant Sciences 9, e11406.
| Crossref | Google Scholar | PubMed |

Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21, 255-265.
| Crossref | Google Scholar | PubMed |

Cai L, Xi Z, Lemmon EM, Lemmon AR, Mast A, Buddenhagen CE, Liu L, Davis CC (2021) The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Systematic Biology 70, 491-507.
| Crossref | Google Scholar | PubMed |

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
| Crossref | Google Scholar | PubMed |

Cardillo M, Weston PH, Reynolds ZKM, Olde PM, Mast AR, Lemmon EM, Lemmon AR, Bromham L (2017) The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a continental plant radiation. Evolution 71, 1928-1943.
| Crossref | Google Scholar | PubMed |

Chaudhary R, Bansal MS, Wehe A, Fernández-Baca D, Eulenstein O (2010) iGTP: a software package for large-scale gene tree parsimony analysis. BMC Bioinformatics 11, 574.
| Crossref | Google Scholar | PubMed |

Clark JW, Donoghue PCJ (2018) Whole-genome duplication and plant macroevolution. Trends in Plant Science 23, 933-945.
| Crossref | Google Scholar | PubMed |

Comte A, Tricou T, Tannier E, Joseph J, Siberchicot A, Penel S, Allio R, Delsuc F, Dray S, De Vienne DM (2023) PhylteR: efficient identification of outlier sequences in phylogenomic datasets. Molecular Biology and Evolution 40, msad234.
| Crossref | Google Scholar | PubMed |

Cooper WE, Crayn DM, Joyce EM (2023) Aglaia fellii W.E.Cooper & Joyce (Meliaceae), a new species for Cape York Peninsula. Australian Journal of Taxonomy 16, 1-9.
| Crossref | Google Scholar |

Crisp MD, Minh BQ, Choi B, Edwards RD, Hereward J, Kulheim C, Lin YP, Meusemann K, Thornhill AH, Toon A, Cook LG (2024) Perianth evolution and implications for generic delimitation in the eucalypts (Myrtaceae), including the description of the new genus, Blakella. Journal of Systematics and Evolution jse 62, 942-962.
| Crossref | Google Scholar |

De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends in Ecology & Evolution 20, 591-597.
| Crossref | Google Scholar | PubMed |

del Pozo JC, Ramirez-Parra E (2015) Whole genome duplications in plants: an overview from Arabidopsis. Journal of Experimental Botany 66, 6991-7003.
| Crossref | Google Scholar | PubMed |

DeSalle R, Absher R, Amato G (1994) Speciation and phylogenetic resolution. Trends in Ecology & Evolution 9, 297-298.
| Crossref | Google Scholar | PubMed |

Dillenberger MS, Kadereit JW (2017) Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia sl, Caryophyllaceae) revealed by genotyping-by-sequencing. Molecular Phylogenetics and Evolution 112, 23-35.
| Crossref | Google Scholar | PubMed |

Douglas J, Jiménez-Silva CL, Bouckaert R (2022) StarBeast3: adaptive parallelized Bayesian inference under the multispecies coalescent. Systematic Biology 71, 901-916.
| Crossref | Google Scholar | PubMed |

Edelman NB, Mallet J (2021) Prevalence and adaptive impact of introgression. Annual Review of Genetics 55, 265-283.
| Crossref | Google Scholar | PubMed |

Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, García-Accinelli G, Van Belleghem SM, Patterson N, Neafsey DE, Challis R, Kumar S, Moreira GRP, Salazar C, Chouteau M, Counterman BA, Papa R, Blaxter M, Reed RD, Dasmahapatra KK, Kronforst M, Joron M, Jiggins CD, McMillan WO, Di Palma F, Blumberg AJ, Wakeley J, Jaffe D, Mallet J (2019) Genomic architecture and introgression shape a butterfly radiation. Science 366, 594-599.
| Crossref | Google Scholar | PubMed |

Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786-788.
| Crossref | Google Scholar | PubMed |

Fér T, Schmickl RE (2018) HybPhyloMaker: target enrichment data analysis from raw reads to species trees. Evolutionary Bioinformatics Online 14, 1176934317742613.
| Crossref | Google Scholar | PubMed |

Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. The New Phytologist 183, 557-564.
| Crossref | Google Scholar | PubMed |

Fowler RM, McLay TGB, Schuster TM, Buirchell BJ, Murphy DJ, Bayly MJ (2020) Plastid phylogenomic analysis of tribe Myoporeae (Scrophulariaceae). Plant Systematics and Evolution 306, 52.
| Crossref | Google Scholar |

Frankel LE, Ané C (2023a) Summary tests of introgression are highly sensitive to rate variation across lineages. bioRxiv 2023, 2023.01.26.525396 [Preprint, published 26 January 2023].
| Crossref | Google Scholar |

Frankel LE, Ané C (2023b) Summary tests of introgression are highly sensitive to rate variation across lineages. Systematic Biology 72(6), 1357-1369.
| Crossref | Google Scholar | PubMed |

Freyman WA, Johnson MG, Rothfels CJ (2023) homologizer: phylogenetic phasing of gene copies into polyploid subgenomes. Methods in Ecology and Evolution 14, 1230-1244.
| Crossref | Google Scholar |

Frost LA, Bedoya AM, Lagomarsino LP (2024) Artifactual orthologs and the need for diligent data exploration in complex phylogenomic datasets: a museomic case study from the Andean Flora. Systematic Biology 73, 308-322.
| Crossref | Google Scholar | PubMed |

Galtier N (2024) An approximate likelihood method reveals ancient gene flow between human, chimpanzee and gorilla. Peer Community Journal 4, e3.
| Crossref | Google Scholar |

Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Biology 28, 132-163.
| Crossref | Google Scholar |

Gunn BF, Murphy DJ, Walsh NG, Conran JG, Pires JC, Macfarlane TD, Birch JL (2020) Evolution of Lomandroideae: multiple origins of polyploidy and biome occupancy in Australia. Molecular Phylogenetics and Evolution 149, 106836.
| Crossref | Google Scholar | PubMed |

Gunn BF, Murphy DJ, Walsh NG, Conran JG, Pires JC, Macfarlane TD, Crisp MD, Cook LG, Birch JL (2024) Genomic data resolve phylogenetic relationships of Australian mat-rushes, Lomandra (Asparagaceae: Lomandroideae). Botanical Journal of the Linnean Society 204, 1-22.
| Crossref | Google Scholar |

Hammer TA, Biffin E, van Dijk K, Thiele KR, Waycott M (2025) A framework phylogeny of the diverse guinea-flowers (Hibbertia, Dilleniaceae) using high-throughput sequence data. Australian Systematic Botany 38(2), SB24009.
| Crossref | Google Scholar |

Hancock LP, Obbens F, Moore AJ, Thiele K, De Vos JM, West J, Holtum JAM, Edwards EJ (2018) Phylogeny, evolution, and biogeographic history of Calandrinia (Montiaceae). American Journal of Botany 105, 1021-1034.
| Crossref | Google Scholar | PubMed |

Handika H, Esselstyn JA (2024) SEGUL: ultrafast, memory‐efficient and mobile‐friendly software for manipulating and summarizing phylogenomic datasets. Molecular Ecology Resources 24(7), e13964.
| Crossref | Google Scholar |

Hart ML, Forrest LL, Nicholls JA, Kidner CA (2016) Retrieval of hundreds of nuclear loci from herbarium specimens. TAXON 65, 1081-1092.
| Crossref | Google Scholar |

Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, Koch MA, Lysak MA, Toro-Núñez Ó, Özüdoğru B, Invernón VR, Walden N, Maurin O, Hay NM, Shushkov P, Mandáková T, Schranz ME, Thulin M, Windham MD, Rešetnik I, Španiel S, Ly E, Pires JC, Harkess A, Neuffer B, Vogt R, Bräuchler C, Rainer H, Janssens SB, Schmull M, Forrest A, Guggisberg A, Zmarzty S, Lepschi BJ, Scarlett N, Stauffer FW, Schönberger I, Heenan P, Baker WJ, Forest F, Mummenhoff K, Lens F (2023) Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Current Biology 33, 4052-4068.
| Crossref | Google Scholar | PubMed |

Hibbins MS, Hahn MW (2022) Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173.
| Crossref | Google Scholar | PubMed |

Hoelzer GA, Meinick DJ (1994) Patterns of speciation and limits to phylogenetic resolution. Trends in Ecology & Evolution 9, 104-107.
| Crossref | Google Scholar | PubMed |

Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68-73.
| Crossref | Google Scholar | PubMed |

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254-267.
| Crossref | Google Scholar |

Jackson C, McLay T, Schmidt-Lebuhn AN (2023) hybpiper-nf and paragone-nf: containerization and additional options for target capture assembly and paralog resolution. Applications in Plant Sciences 11, e11532.
| Crossref | Google Scholar | PubMed |

Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega NJ, Wickett NJ (2016) HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4, 1600016.
| Crossref | Google Scholar | PubMed |

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68, 594-606.
| Crossref | Google Scholar | PubMed |

Joly S (2012) JML: testing hybridization from species trees. Molecular Ecology Resources 12, 179-184.
| Crossref | Google Scholar | PubMed |

Joly S, McLenachan PA, Lockhart PJ (2009) A statistical approach for distinguishing hybridization and incomplete lineage sorting. The American Naturalist 174, 54-70.
| Crossref | Google Scholar | PubMed |

Joyce EM, Appelhans MS, Buerki S, Cheek M, de Vos JM, Pirani JR, Zuntini AR, Bachelier JB, Bayly MJ, Callmander MW, Devecchi MF, Pell SK, Groppo M, Lowry PP, Mitchell J, Siniscalchi CM, Munzinger J, Orel HK, Pannell CM, Nauheimer L, Sauquet H, Weeks A, Muellner-Riehl AN, Leitch IJ, Maurin O, Forest F, Nargar K, Thiele KR, Baker WJ, Crayn DM (2023) Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication. Frontiers in Plant Science 14, 1063174.
| Crossref | Google Scholar | PubMed |

Joyce EM, Schmidt-Lebuhn AN, Orel HK, Nge FJ, Anderson BM, Hammer TA, McLay TGB (2024) Navigating phylogenetic conflict and evolutionary inference in plants with target capture data. EcoEvoRxiv 2024, Version 2 [Preprint, published 27 May 2024, updated 7 March 2025].
| Crossref | Google Scholar |

Karimi N, Grover CE, Gallagher JP, Wendel JF, Ané C, Baum DA (2020) Reticulate evolution helps explain apparent homoplasy in floral biology and pollination in baobabs (Adansonia; Bombacoideae; Malvaceae). Systematic Biology 69, 462-478.
| Crossref | Google Scholar | PubMed |

Kates HR, Johnson MG, Gardner EM, Zerega NJC, Wickett NJ (2018) Allele phasing has minimal impact on phylogenetic reconstruction from targeted nuclear gene sequences in a case study of Artocarpus. American Journal of Botany 105, 404-416.
| Crossref | Google Scholar | PubMed |

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453-4455.
| Crossref | Google Scholar | PubMed |

Kück P, Romahn J, Meusemann K (2022) Pitfalls of the site-concordance factor (sCF) as measure of phylogenetic branch support. NAR Genomics and Bioinformatics 4, lqac064.
| Crossref | Google Scholar | PubMed |

Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K (2012) Statistics and truth in phylogenomics. Molecular Biology and Evolution 29, 457-472.
| Crossref | Google Scholar | PubMed |

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS (2018) Impact of whole‐genome duplication events on diversification rates in angiosperms. American Journal of Botany 105, 348-363.
| Crossref | Google Scholar | PubMed |

Lanfear R, Hahn MW (2024) The meaning and measure of concordance factors in phylogenomics. Molecular Biology and Evolution 41, msae214.
| Crossref | Google Scholar | PubMed |

Larget BR, Kotha SK, Dewey CN, Ané C (2010) BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26, 2910-2911.
| Crossref | Google Scholar | PubMed |

Larridon I, Zuntini AR, Barrett RL, Wilson KL, Bruhl JJ, Goetghebeur P, Baker WJ, Brewer GE, Epitawalage N, Fairlie I, Forest F, Sabino Kikuchi IAB, Pokorny L, Semmouri I, Spalink D, Simpson DA, Muasya AM, Roalson EH (2021) Resolving generic limits in Cyperaceae tribe Abildgaardieae using targeted sequencing. Botanical Journal of the Linnean Society 196, 163-187.
| Crossref | Google Scholar |

Leaché AD, Rannala B (2011) The accuracy of species tree estimation under simulation: a comparison of methods. Systematic Biology 60, 126-137.
| Crossref | Google Scholar | PubMed |

Lemmon AR, Emme SA, Lemmon EM (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology 61(5), 727-744.
| Crossref | Google Scholar | PubMed |

Lewis PO, Holder MT, Holsinger KE (2005) Polytomies and Bayesian phylogenetic inference. Systematic Biology 54, 241-253.
| Crossref | Google Scholar | PubMed |

Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676.
| Crossref | Google Scholar | PubMed |

Liao X, Li M, Zou Y, Wu F, Yi‐Pan , Wang J (2019) Current challenges and solutions of de novo assembly. Quantitative Biology 7, 90-109.
| Crossref | Google Scholar |

McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). American Journal of Botany 86, 1038-1046.
| Crossref | Google Scholar | PubMed |

McLay TGB, Birch JL, Gunn BF, Ning W, Tate JA, Nauheimer L, Joyce EM, Simpson L, Schmidt-Lebuhn AN, Baker WJ, Forest F, Jackson CJ (2021) New targets acquired: improving locus recovery from the Angiosperms353 probe set. Applications in Plant Sciences 9, e11420.
| Crossref | Google Scholar | PubMed |

McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ (2023) Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Molecular Phylogenetics and Evolution 187, 107869.
| Crossref | Google Scholar | PubMed |

Maddison W (1989) Reconstructing character evolution on polytomous cladograms. Cladistics 5, 365-377.
| Crossref | Google Scholar | PubMed |

Maddison WP (1997) Gene trees in species trees. Systematic Biology 46, 523-536.
| Crossref | Google Scholar |

Mai U, Mirarab S (2018) TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 272.
| Crossref | Google Scholar | PubMed |

Marques DA, Meier JI, Seehausen O (2019) A combinatorial view on speciation and adaptive radiation. Trends in Ecology & Evolution 34, 531-544.
| Crossref | Google Scholar | PubMed |

Mason AS, Wendel JF (2020) Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution. Frontiers in Genetics 11, 1014.
| Crossref | Google Scholar | PubMed |

Matsubayashi KW, Yamaguchi R (2022) The speciation view: disentangling multiple causes of adaptive and non-adaptive radiation in terms of speciation. Population Ecology 64, 95-107.
| Crossref | Google Scholar |

Minh BQ, Hahn MW, Lanfear R (2020a) New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37, 2727-2733.
| Crossref | Google Scholar | PubMed |

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020b) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530-1534.
| Crossref | Google Scholar | PubMed |

Mirarab S, Reaz R, Bayzid MdS, Zimmermann T, Swenson MS, Warnow T (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, 541-8.
| Crossref | Google Scholar | PubMed |

Mirarab S, Bayzid MS, Warnow T (2016) Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Systematic Biology 65, 366-380.
| Crossref | Google Scholar | PubMed |

Mishra S, Smith ML, Hahn MW (2023) reconcILS: a gene tree-species tree reconciliation algorithm that allows for incomplete lineage sorting. bioRxiv 2023, 2023.11.03.565544 [Preprint, published 13 October 2024].
| Crossref | Google Scholar |

Mo YK, Lanfear R, Hahn MW, Minh BQ (2023) Updated site concordance factors minimize effects of homoplasy and taxon sampling. Bioinformatics 39, btac741.
| Crossref | Google Scholar | PubMed |

Mo YK, Hahn MW, Smith ML (2024) Applications of machine learning in phylogenetics. Molecular Phylogenetics and Evolution 196, 108066.
| Crossref | Google Scholar | PubMed |

Molloy EK, Warnow T (2018) To include or not to include: the impact of gene filtering on species tree estimation methods. Systematic Biology 67, 285-303.
| Crossref | Google Scholar | PubMed |

Molloy EK, Warnow T (2020) FastMulRFS: fast and accurate species tree estimation under generic gene duplication and loss models. Bioinformatics 36, i57-i65.
| Crossref | Google Scholar | PubMed |

Mongiardino Koch N (2021) Phylogenomic subsampling and the search for phylogenetically reliable loci. Molecular Biology and Evolution 38, 4025-4038.
| Crossref | Google Scholar | PubMed |

Morales-Briones DF, Gehrke B, Huang C-H, Liston A, Ma H, Marx HE, Tank DC, Yang Y (2021) Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events in Alchemilla s.l. (Rosaceae). Systematic Biology 71, 190-207.
| Crossref | Google Scholar | PubMed |

Morel B, Schade P, Lutteropp S, Williams TA, Szöllősi GJ, Stamatakis A (2022) SpeciesRax: a tool for maximum likelihood species tree inference from gene family trees under duplication, transfer, and loss. Molecular Biology and Evolution 39, msab365.
| Crossref | Google Scholar | PubMed |

Morel B, Williams TA, Stamatakis A, Szöllősi GJ (2024) AleRax: a tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss. Bioinformatics 40, btae162.
| Crossref | Google Scholar | PubMed |

Nauheimer L, Cui L, Clarke C, Crayn DM, Bourke G, Nargar K (2019) Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales). Australian Systematic Botany 32, 243-254.
| Crossref | Google Scholar |

Nauheimer L, Weigner N, Joyce E, Crayn D, Clarke C, Nargar K (2021) HybPhaser: a workflow for the detection and phasing of hybrids in target capture data sets. Applications in Plant Sciences 9, e11441.
| Crossref | Google Scholar | PubMed |

Nevill PG, Després T, Bayly MJ, Bossinger G, Ades PK (2014) Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genetics & Genomes 10, 1079-1092.
| Crossref | Google Scholar |

Nge FJ, Biffin E, Thiele KR, Waycott M (2021a) Reticulate evolution, ancient chloroplast haplotypes, and rapid radiation of the Australian plant genus Adenanthos (Proteaceae). Frontiers in Ecology and Evolution 8, 616741.
| Crossref | Google Scholar |

Nge FJ, Kellermann J, Biffin E, Waycott M, Thiele KR (2021b) Historical biogeography of Pomaderris (Rhamnaceae): continental vicariance in Australia and repeated independent dispersals to New Zealand. Molecular Phylogenetics and Evolution 158, 107085.
| Crossref | Google Scholar | PubMed |

Nge FJ, Biffin E, Waycott M, Thiele KR (2022) Phylogenomics and continental biogeographic disjunctions: insight from the Australian starflowers (Calytrix). American Journal of Botany 109, 291-308.
| Crossref | Google Scholar | PubMed |

Nge FJ, Kellermann J, Biffin E, Thiele KR, Waycott M (2024) Rise and fall of a continental mesic radiation in Australia: spine evolution, biogeography, and diversification of Cryptandra (Rhamnaceae: Pomaderreae). Botanical Journal of the Linnean Society 204, 327-342.
| Crossref | Google Scholar |

Nge FJ, Biffin E, Rye BL, Wilson PG, van Dijk K, Thiele KR, Waycott M, Barrett MD (2025) Australian biogeography, climate-dependent diversification and phylogenomics of the spectacular Chamelaucieae tribe (Myrtaceae). Australian Systematic Botany 38(1), SB24014.
| Crossref | Google Scholar |

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Nicol DA, Saldivia P, Summerfield TC, Heads M, Lord JM, Khaing EP, Larcombe MJ (2024) Phylogenomics and morphology of Celmisiinae (Asteraceae: Astereae): taxonomic and evolutionary implications. Molecular Phylogenetics and Evolution 195, 108064.
| Crossref | Google Scholar | PubMed |

Nute M, Chou J, Molloy EK, Warnow T (2018) The performance of coalescent-based species tree estimation methods under models of missing data. BMC Genomics 19, 286.
| Crossref | Google Scholar | PubMed |

Orel HK, McLay TGB, Neal WC, Forster PI, Bayly MJ (2023) Plastid phylogenomics of the Eriostemon group (Rutaceae; Zanthoxyloideae): support for major clades and investigation of a backbone polytomy. Australian Systematic Botany 36, 355-385.
| Crossref | Google Scholar |

Orel HK, McLay TG, Guja LK, Duretto MF, Bayly MJ (2024) Genomic data inform taxonomy and conservation of critically endangered shrubs: a case study of Zieria (Rutaceae) species from eastern Australia. Botanical Journal of the Linnean Society 205, 292-312.
| Crossref | Google Scholar |

Orel HK, McLay TGB, Forster PI, Bayly MJ (2025) Target capture sequencing clarifies key relationships in the Eriostemon group (Rutaceae: Zanthoxyloideae) and supports a reclassification of Philotheca, including the recognition of two new genera. TAXON. [Published online early 6 February 2025].
| Crossref | Google Scholar |

Ortiz EM, Höwener A, Shigita G, Raza M, Maurin O, Zuntini A, Forest F, Baker WJ, Schaefer H (2023) A novel phylogenomics pipeline reveals complex pattern of reticulate evolution in Cucurbitales. bioRxiv 2023, 2023.10.27.564367 [Preprint, published 26 December 2024].
| Crossref | Google Scholar |

Ostevik KL, Andrew RL, Otto SP, Rieseberg LH (2016) Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 70, 2322-2335.
| Crossref | Google Scholar | PubMed |

Page RD (1994) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43, 58-77.
| Crossref | Google Scholar |

Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Molecular Biology and Evolution 5, 568-583.
| Crossref | Google Scholar | PubMed |

Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiology 171, 2294-2316.
| Crossref | Google Scholar | PubMed |

Paradis E (2013) Molecular dating of phylogenies by likelihood methods: a comparison of models and a new information criterion. Molecular Phylogenetics and Evolution 67, 436-444.
| Crossref | Google Scholar | PubMed |

Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528.
| Crossref | Google Scholar | PubMed |

Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC (2021) A multitiered sequence capture strategy spanning broad evolutionary scales: application for phylogenetic and phylogeographic studies of orchids. Molecular Ecology Resources 21, 1118-1140.
| Crossref | Google Scholar | PubMed |

Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA (2018) Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. American Journal of Botany 105, 385-403.
| Crossref | Google Scholar | PubMed |

Pillon Y, Hopkins HCF, Maurin O, Epitawalage N, Bradford J, Rogers ZS, Baker WJ, Forest F (2021) Phylogenomics and biogeography of Cunoniaceae (Oxalidales) with complete generic sampling and taxonomic realignments. American Journal of Botany 108, 1181-1200.
| Crossref | Google Scholar | PubMed |

Potts AJ, Hedderson TA, Grimm GW (2014) Constructing phylogenies in the presence of intra-individual site polymorphisms (2ISPs) with a focus on the nuclear ribosomal cistron. Systematic Biology 63, 1-16.
| Crossref | Google Scholar | PubMed |

Rannala B, Edwards VS, Leaché A, Yang Z (2020) The multi-species coalescent model and species tree inference. In ‘Phylogenetics in the Genomic Era)’. pp. 3.3:1–3.3:21. (Published by the authors, CC BY-NC-ND) Available at https://hal.science/hal-02535622v1

Raza M, Ortiz EM, Schwung L, Shigita G, Schaefer H (2023) Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines. BMC Ecology and Evolution 23, 75.
| Crossref | Google Scholar | PubMed |

Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J (2018) Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular Plant 11, 414-428.
| Crossref | Google Scholar | PubMed |

Salichos L, Rokas A (2013) Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327-331.
| Crossref | Google Scholar | PubMed |

Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19, 101-109.
| Crossref | Google Scholar | PubMed |

Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301-302.
| Crossref | Google Scholar | PubMed |

Sayyari E, Mirarab S (2016) Fast coalescent-based computation of local branch support from quartet frequencies. Molecular Biology and Evolution 33, 1654-1668.
| Crossref | Google Scholar | PubMed |

Sayyari E, Mirarab S (2018) Testing for polytomies in phylogenetic species trees using quartet frequencies. Genes 9, 132.
| Crossref | Google Scholar | PubMed |

Sayyari E, Whitfield JB, Mirarab S (2018) DiscoVista: interpretable visualizations of gene tree discordance. Molecular Phylogenetics and Evolution 122, 110-115.
| Crossref | Google Scholar | PubMed |

Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341-345.
| Crossref | Google Scholar | PubMed |

Schmidt-Lebuhn AN (2022) Sequence capture data support the taxonomy of Pogonolepis (Asteraceae: Gnaphalieae) and show unexpected genetic structure. Australian Systematic Botany 35(4), 317-325.
| Crossref | Google Scholar |

Schmidt-Lebuhn AN, Bovill J (2021) Phylogenomic data reveal four major clades of Australian Gnaphalieae (Asteraceae). TAXON 70, 1020-1034.
| Crossref | Google Scholar |

Schmidt-Lebuhn AN, Grealy A (2024) Transfer of Cotula alpina to the genus Leptinella (Asteraceae: Anthemideae). Australian Systematic Botany 37, SB23012.
| Crossref | Google Scholar |

Schmidt-Lebuhn AN, Egli D, Grealy A, Nicholls JA, Zwick A, Dymock JJ, Gooden B (2024a) Genetic data confirm the presence of Senecio madagascariensis in New Zealand. New Zealand Journal of Botany 62, 1-13.
| Crossref | Google Scholar |

Schmidt-Lebuhn AN, Chen SH, Grealy A (2024b) Elachanthus, Isoetopsis and Kippistia are nested in the genus Minuria (Asteraceae: Astereae). Australian Systematic Botany 37(4), SB23028.
| Crossref | Google Scholar |

Shee ZQ, Frodin DG, Cámara-Leret R, Pokorny L (2020) Reconstructing the complex evolutionary history of the Papuasian Schefflera radiation through herbariomics. Frontiers in Plant Science 11, 258.
| Crossref | Google Scholar | PubMed |

Simmons MP, Gatesy J (2015) Coalescence vs. concatenation: sophisticated analyses vs. first principles applied to rooting the angiosperms. Molecular Phylogenetics and Evolution 91, 98-122.
| Crossref | Google Scholar | PubMed |

Simmons MP, Gatesy J (2021) Collapsing dubiously resolved gene-tree branches in phylogenomic coalescent analyses. Molecular Phylogenetics and Evolution 158, 107092.
| Crossref | Google Scholar | PubMed |

Simpson J, Conran JG, Biffin E, Van Dijk K, Waycott M (2022) The Crinum flaccidum (Amaryllidaceae) species complex in Australia. Australian Systematic Botany 35, 395-402.
| Crossref | Google Scholar |

Siniscalchi CM, Hidalgo O, Palazzesi L, Pellicer J, Pokorny L, Maurin O, Leitch IJ, Forest F, Baker WJ, Mandel JR (2021) Lineage‐specific vs. universal: a comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Applications in Plant Sciences 9, e11422.
| Crossref | Google Scholar |

Smirnov V, Warnow T (2021) Phylogeny estimation given sequence length heterogeneity. Systematic Biology 70(2), 268-282.
| Crossref | Google Scholar |

Smith ML, Hahn MW (2021) New approaches for inferring phylogenies in the presence of paralogs. Trends in Genetics 37, 174-187.
| Crossref | Google Scholar | PubMed |

Smith ML, Hahn MW (2022) The frequency and topology of pseudoorthologs. Systematic Biology 71, 649-659.
| Crossref | Google Scholar | PubMed |

Smith SA, O’Meara BC (2012) treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690.
| Crossref | Google Scholar | PubMed |

Smith SA, Moore MJ, Brown JW, Yang Y (2015) Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15, 150.
| Crossref | Google Scholar | PubMed |

Smith SA, Brown JW, Walker JF (2018) So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS ONE 13, e0197433.
| Crossref | Google Scholar | PubMed |

Smith BT, Mauck WM, Benz BW, Andersen MJ (2020) Uneven missing data skew phylogenomic relationships within the lories and lorikeets. Genome Biology and Evolution 12, 1131-1147.
| Crossref | Google Scholar | PubMed |

Solís-Lemus C, Ané C (2016) Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genetics 12, e1005896.
| Crossref | Google Scholar | PubMed |

Solís-Lemus C, Bastide P, Ané C (2017) PhyloNetworks: a package for phylogenetic networks. Molecular Biology and Evolution 34(12), 3292-3298.
| Crossref | Google Scholar |

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. American Journal of Botany 96, 336-348.
| Crossref | Google Scholar | PubMed |

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
| Crossref | Google Scholar | PubMed |

Steenwyk JL, Buida TJ, Li Y, Shen X-X, Rokas A (2020) ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18, e3001007.
| Crossref | Google Scholar | PubMed |

Steenwyk JL, Li Y, Zhou X, Shen X-X, Rokas A (2023) Incongruence in the phylogenomics era. Nature Reviews Genetics 24, 834-850.
| Crossref | Google Scholar | PubMed |

Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences of the United States of America 109, 2434-2438.
| Crossref | Google Scholar | PubMed |

Strobel V (2018) Pold87/academic-keyword-occurrence: first release. Zenodo 2018, v1.0.0 [Dataset, published 14 April 2014].
| Crossref | Google Scholar |

Struck TH (2013) The impact of paralogy on phylogenomic studies – a case study on annelid relationships. PLoS ONE 8, e62892.
| Crossref | Google Scholar | PubMed |

Stull GW, Pham KK, Soltis PS, Soltis DE (2023) Deep reticulation: the long legacy of hybridization in vascular plant evolution. The Plant Journal 114, 743-766.
| Crossref | Google Scholar | PubMed |

Suarez-Gonzalez A, Lexer C, Cronk QCB (2018) Adaptive introgression: a plant perspective. Biology Letters 14, 20170688.
| Crossref | Google Scholar | PubMed |

Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In ‘Molecular Systematics’. (Eds DM Hillis, C Moritz, BK Mable) pp. 407–514. (Sinauer Associates: Sunderland, MA, USA)

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America 109, 19333-19338.
| Crossref | Google Scholar | PubMed |

Tamura K, Tao Q, Kumar S (2018) Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. Molecular Biology and Evolution 35, 1770-1782.
| Crossref | Google Scholar | PubMed |

Tea Y-K, Xu X, DiBattista JD, Lo N, Cowman PF, Ho SYW (2022) Phylogenomic analysis of concatenated ultraconserved elements reveals the recent evolutionary radiation of the fairy wrasses (Teleostei: Labridae: Cirrhilabrus). Systematic Biology 71, 1-12.
| Crossref | Google Scholar | PubMed |

Than C, Ruths D, Nakhleh L (2008) PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322.
| Crossref | Google Scholar | PubMed |

Thomson RC, Brown JM (2022) On the need for new measures of phylogenomic support. Systematic Biology 71, 917-920.
| Crossref | Google Scholar | PubMed |

Thomas GWC, Ather SH, Hahn MW (2017) Gene-tree reconciliation with MUL-trees to resolve polyploidy events. Systematic Biology 66, 1007-1018.
| Crossref | Google Scholar | PubMed |

Tumescheit C, Firth AE, Brown K (2022) CIAlign: a highly customisable command line tool to clean, interpret and visualise multiple sequence alignments. PeerJ 10, e12983.
| Crossref | Google Scholar | PubMed |

Ufimov R, Gorospe JM, Fér T, Kandziora M, Salomon L, van Loo M, Schmickl R (2022) Utilizing paralogues for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data. Molecular Ecology Resources 22, 3018-3034.
| Crossref | Google Scholar | PubMed |

Van Dijk K, Waycott M, Biffin E, Creed JC, Albertazzi FJ, Samper-Villarreal J (2023) Phylogenomic insights into the phylogeography of Halophila baillonii Asch. Diversity 15, 111.
| Crossref | Google Scholar |

Vatanparast M, Powell A, Doyle JJ, Egan AN (2018) Targeting legume loci: a comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Applications in Plant Sciences 6, e1036.
| Crossref | Google Scholar | PubMed |

Walsh HE, Kidd MG, Moum T, Friesen VL (1999) Polytomies and the power of phylogenetic inference. Evolution 53, 932-937.
| Crossref | Google Scholar | PubMed |

Waycott M, Van Dijk K, Biffin E (2021) A hybrid capture RNA bait set for resolving genetic and evolutionary relationships in angiosperms from deep phylogeny to intraspecific lineage hybridization. bioRxiv 2021, 2021.09.06.456727 [Preprint, published 7 September 2021].
| Crossref | Google Scholar |

Wen D, Yu Y, Nakhleh L (2016) Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLoS Genetics 12, e1006006.
| Crossref | Google Scholar | PubMed |

Wen D, Yu Y, Zhu J, Nakhleh L (2018) Inferring phylogenetic networks using PhyloNet. Systematic Biology 67(4), 735-740.
| Crossref | Google Scholar |

Whitfield JB, Lockhart PJ (2007) Deciphering ancient rapid radiations. Trends in Ecology & Evolution 22, 258-265.
| Crossref | Google Scholar | PubMed |

Williamson L, Biffin E, Hammer T, van Dijk K, Conran J, Waycott M (2025) Phylogenomics of Australian sundews (Drosera: Droseraceae). Australian Systematic Botany 38, SB24016.
| Crossref | Google Scholar |

Willson J, Roddur MS, Liu B, Zaharias P, Warnow T (2022) DISCO: species tree inference using multicopy gene family tree decomposition. Systematic Biology 71, 610-629.
| Crossref | Google Scholar | PubMed |

Xi Z, Liu L, Davis CC (2016) The impact of missing data on species tree estimation. Molecular Biology and Evolution 33, 838-860.
| Crossref | Google Scholar | PubMed |

Xiong H, Wang D, Shao C, Yang X, Yang J, Ma T, Davis CC, Liu L, Xi Z (2022) Species tree estimation and the impact of gene loss following whole-genome duplication. Systematic Biology 71, 1348-1361.
| Crossref | Google Scholar | PubMed |

Yan Z, Smith ML, Du P, Hahn MW, Nakhleh L (2022) Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. Systematic Biology 71, 367-381.
| Crossref | Google Scholar | PubMed |

Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 1586-1591.
| Crossref | Google Scholar | PubMed |

Yang Y, Smith SA (2014) Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution 31, 3081-3092.
| Crossref | Google Scholar | PubMed |

Yang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA (2018) Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytologist 217, 855-870.
| Crossref | Google Scholar | PubMed |

Yu Y, Nakhleh L (2015) A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics 16, S10.
| Crossref | Google Scholar | PubMed |

Zhang C, Mirarab S (2022) ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949-4950.
| Crossref | Google Scholar | PubMed |

Zhang C, Ogilvie HA, Drummond AJ, Stadler T (2018a) Bayesian inference of species networks from multilocus sequence data. Molecular Biology and Evolution 35, 504-517.
| Crossref | Google Scholar |

Zhang C, Rabiee M, Sayyari E, Mirarab S (2018b) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153.
| Crossref | Google Scholar |

Zhang C, Scornavacca C, Molloy EK, Mirarab S (2020) ASTRAL-Pro: quartet-based species-tree inference despite paralogy. Molecular Biology and Evolution 37, 3292-3307.
| Crossref | Google Scholar | PubMed |

Zhang C, Zhao Y, Braun EL, Mirarab S (2021) TAPER: pinpointing errors in multiple sequence alignments despite varying rates of evolution. Methods in Ecology and Evolution 12(11), 2145-2158.
| Crossref | Google Scholar |

Zhang Q, Folk RA, Mo Z-Q, Ye H, Zhang Z-Y, Peng H, Zhao J-L, Yang S-X, Yu X-Q (2023) Phylotranscriptomic analyses reveal deep gene tree discordance in Camellia (Theaceae). Molecular Phylogenetics and Evolution 188, 107912.
| Crossref | Google Scholar | PubMed |

Zhang Z, Xie P, Guo Y, Zhou W, Liu E, Yu Y (2022) Easy353: a tool to get Angiosperms353 genes for phylogenomic research. Molecular Biology and Evolution 39, msac261.
| Crossref | Google Scholar | PubMed |

Zhou W, Soghigian J, Xiang QJ (2022) A new pipeline for removing paralogs in target enrichment data. Systematic Biology 71, 410-425.
| Crossref | Google Scholar | PubMed |

Zhou X, Lutteropp S, Czech L, Stamatakis A, Looz MV, Rokas A (2020) Quartet-based computations of internode certainty provide robust measures of phylogenetic incongruence. Systematic Biology 69, 308-324.
| Crossref | Google Scholar | PubMed |

Zuntini A, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, Françoso E, Gallego-Paramo B, McGinnie C, Negrão R, Roy SR, Simpson L, Toledo Romero E, Barber VMA, Botigué L, Clarkson JJ, Cowan RS, Dodsworth S, Johnson MG, Kim JT, Pokorny L, Wickett NJ, Antar GM, DeBolt L, Gutierrez K, Hendriks KP, Hoewener A, Hu A-Q, Joyce EM, Kikuchi IABS, Larridon I, Larson DA, de Lírio EJ, Liu J-X, Malakasi P, Przelomska NAS, Shah T, Viruel J, Allnutt TR, Ameka GK, Andrew RL, Appelhans MS, Arista M, Ariza MJ, Arroyo J, Arthan W, Bachelier JB, Bailey CD, Barnes HF, Barrett MD, Barrett RL, Bayer RJ, Bayly MJ, Biffin E, Biggs N, Birch JL, Bogarín D, Borosova R, Bowles AMC, Boyce PC, Bramley GLC, Briggs M, Broadhurst L, Brown GK, Bruhl JJ, Bruneau A, Buerki S, Burns E, Byrne M, Cable S, Calladine A, Callmander MW, Cano Á, Cantrill DJ, Cardinal-McTeague WM, Carlsen MM, Carruthers AJA, de Castro Mateo A, Chase MW, Chatrou LW, Cheek M, Chen S, Christenhusz MJM, Christin P-A, Clements MA, Coffey SC, Conran JG, Cornejo X, Couvreur TLP, Cowie ID, Csiba L, Darbyshire I, Davidse G, Davies NMJ, Davis AP, van Dijk K, Downie SR, Duretto MF, Duvall MR, Edwards SL, Eggli U, Erkens RHJ, Escudero M, de la Estrella M, Fabriani F, Fay MF, Ferreira Pde L, Ficinski SZ, Fowler RM, Frisby S, Fu L, Fulcher T, Galbany-Casals M, Gardner EM, German DA, Giaretta A, Gibernau M, Gillespie LJ, González CC, Goyder DJ, Graham SW, Grall A, Green L, Gunn BF, Gutiérrez DG, Hackel J, Haevermans T, Haigh A, Hall JC, Hall T, Harrison MJ, Hatt SA, Hidalgo O, Hodkinson TR, Holmes GD, Hopkins HCF, Jackson CJ, James SA, Jobson RW, Kadereit G, Kahandawala IM, Kainulainen K, Kato M, Kellogg EA, King GJ, Klejevskaja B, Klitgaard BB, Klopper RR, Knapp S, Koch MA, Leebens-Mack JH, Lens F, Leon CJ, Léveillé-Bourret É, Lewis GP, Li D-Z, Li L, Liede-Schumann S, Livshultz T, Lorence D, Lu M, Lu-Irving P, Luber J, Lucas EJ, Luján M, Lum M, Macfarlane TD, Magdalena C, Mansano VF, Masters LE, Mayo SJ, McColl K, McDonnell AJ, McDougall AE, McLay TGB, McPherson H, Meneses RI, Merckx VSFT, Michelangeli FA, Mitchell JD, Monro AK, Moore MJ, Mueller TL, Mummenhoff K, Munzinger J, Muriel P, Murphy DJ, Nargar K, Nauheimer L, Nge FJ, Nyffeler R, Orejuela A, Ortiz EM, Palazzesi L, Peixoto AL, Pell SK, Pellicer J, Penneys DS, Perez-Escobar OA, Persson C, Pignal M, Pillon Y, Pirani JR, Plunkett GM, Powell RF, Prance GT, Puglisi C, Qin M, Rabeler RK, Rees PEJ, Renner M, Roalson EH, Rodda M, Rogers ZS, Rokni S, Rutishauser R, de Salas MF, Schaefer H, Schley RJ, Schmidt-Lebuhn A, Shapcott A, Al-Shehbaz I, Shepherd KA, Simmons MP, Simões AO, Simões A, Rita G, Siros M, Smidt EC, Smith JF, Snow N, Soltis DE, Soltis PS, Soreng RJ, Sothers CA, Starr JR, Stevens PF, Straub SCK, Struwe L, Taylor JM, Telford IRH, Thornhill AH, Tooth I, Trias-Blasi A, Udovicic F, Utteridge TMA, Del Valle JC, Verboom GA, Vonow HP, Vorontsova MS, de Vos JM, Al-Wattar N, Waycott M, Welker CAD, White AJ, Wieringa JJ, Williamson LT, Wilson TC, Wong SY, Woods LA, Woods R, Worboys S, Xanthos M, Yang Y, Zhang Y-X, Zhou M-Y, Zmarzty S, Zuloaga FO, Antonelli A, Bellot S, Crayn DM, Grace OM, Kersey PJ, Leitch IJ, Sauquet H, Smith SA, Eiserhardt WL, Forest F, Baker WJ (2024) Phylogenomics and the rise of the angiosperms. Nature 629, 843-850.
| Crossref | Google Scholar | PubMed |