Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Changes in nitrogen and organic carbon of wheat growing soils after various periods of grazed lucerne, extended fallowing and continuous wheat

ICR Holford

Australian Journal of Soil Research 19(3) 239 - 249
Published: 1981

Abstract

Changes in total and mineral nitrogen and organic carbon were measured over a nine year period in two contrasting soils of northern New South Wales after various durations of grazed lucerne, extended fallowing and continuous wheat growing. At least 2 1/2 years of lucerne ley were required to raise the total soil nitrogen above the original level on both soil types. For each year of lucerne growth the average increase (above the control treatments) in total soil nitrogen (0-15 cm) was equivalent to about 140 kg nitrogen ha-1 in the black earth and about 110 kg nitrogen ha-1 in the red-brown earth. Significantly higher levels of soil nitrogen were maintained after the lucerne treatments throughout the 9 years of measurement on the black earth and for 5 years on the red-brown earth. Lucerne had a much larger effect on nitrogen than on organic carbon, which was significantly increased only in the black earth. There were very large increases in mineral nitrogen (0-15 cm) in the first year of measurement after lucerne. Levels remained greater than they were originally for the first 4 years, and they were greater for 7 years in the black earth and 4 years in the red-brown earth following lucerne than following continuous wheat or extended fallow. The decline in mineral nitrogen during wheat cropping after lucerne was greatly increased by excessive rainfall (574 mm or more) during the fallow. Leaching was greater in the red-brown earth than in the black earth, and this explained occasional differences in nitrogen uptake by wheat between the two soil types. Some evidence suggested that under moderately moist conditions nitrogen mineralization from lucerne-fixed nitrogen was greater in the red-brown earth than in the black earth but under drier conditions it was less.

https://doi.org/10.1071/SR9810239

© CSIRO 1981

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (28) Get Permission

View Dimensions