Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) kangaroos

D. Ouwerkerk A , A. J. Maguire A , L. McMillen A and A. V. Klieve A B
+ Author Affiliations
- Author Affiliations

A Animal Science, Department of Primary Industries and Fisheries, Yeerongpilly, Qld 4105, Australia.

B Corresponding author. Email: athol.klieve@dpi.qld.gov.au

Animal Production Science 49(11) 1043-1051 https://doi.org/10.1071/EA08294
Submitted: 4 December 2008  Accepted: 26 June 2009   Published: 14 October 2009

Abstract

Reductive acetogenesis is an alternative to methanogenesis for removing hydrogen produced during enteric fermentation. In Australia, kangaroos have evolved an enlarged forestomach analogous to the rumen of sheep and cattle. However, unlike sheep and cattle, kangaroos produce very little methane from enteric fermentation. From samples of gut contents from five eastern grey and three red kangaroos, we were not able to detect methanogens using a PCR protocol, but did detect the formyltetrahydrofolate synthetase (FTHFS) gene (likely to be used for reductive acetogenesis) in all animals. Isolations to recover acetogens resulted in two different classes of hydrogen consuming bacteria being isolated. The first class consisted of acetogens that possessed the FTHFS gene, which except for Clostridium glycolicum, were not closely related to any previously cultured bacteria. The second class were not acetogens but consisted of enterobacteria (Escherichia coli and Shigella) that did not possess FTHFS genes but did utilise hydrogen and produce acetate. Enumeration of the acetogens containing the FTHFS gene by real-time PCR indicated that bacteria of the taxa designated YE257 were common to all the kangaroos whereas YE266/YE273 were only detected in eastern grey kangaroos. When present, both species occurred at densities above ×106 cell equivalents per mL. C. glycolicum was not detected in the kangaroos and, unlike YE257 and YE266/273, is unlikely to play a major role in reductive acetogenesis in the foregut of kangaroos.


Acknowledgements

We thank Barbara Williams, Jessica Morgan and Ian Brock at the Animal Research Institute, DPI&F (Qld), the staff of Croxdale Research station (DPI&F) and the staff of the DNA Sequence Analysis Facility of the Griffith University for technical assistance. This work was funded by Queensland DPI&F’s seed funding initiative and Meat and Livestock Australia.


References


Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
CAS | PubMed |
open url image1

Barns SM, Fundyga RE, Jeffries MW (1994) Remarkable archaeal diversity detected in a Yellowstone-national park hot spring environment. Proceedings of the National Academy of Sciences of the United States of America 91, 1609–1613.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Applied and Environmental Microbiology 52, 623–630.
CAS | PubMed |
open url image1

Burow LC, Gobius KS, Vanselow BA, Klieve AV (2005) A lack of predatory interaction between rumen ciliate protozoa and Shiga-toxin producing E. coli (STEC). Letters in Applied Microbiology 40, 117–122.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dellow DW, Hume ID, Clarke RTJ, Bauchop T (1988) Microbial activity in the forestomach of free-living macropodid marsupials: comparisons with laboratory studies. Australian Journal of Zoology 36, 383–395.
Crossref | GoogleScholarGoogle Scholar | open url image1

Evans PN, Dehority BA, Wright ADG (2008) Methanogens detected in the foreguts of the tammar wallaby (Macropus eugenii), the red kangaroo (Macropus rufus) and western grey kangaroo (Macropus fuliginosus). Australian Journal of Experimental Agriculture48 xli xlii

Evans PN, Hinds LA, Sly LI, McSweeney CS, Morrison M, Wright ADG (2009) Community composition and density of methanogens in the foregut of the tammar wallaby (Macropus eugenii). Applied and Environmental Microbiology 75, 2598–2602.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fievez V, Mbanzamihigo L, Piattoni F, Demeyer D (2001) Evidence for reductive acetogenesis and its nutritional significance in ostrich hindgut as estimated from in vitro incubations. Journal of Animal Physiology and Animal Nutrition 85, 271–280.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Applied and Environmental Microbiology 73, 6391–6403.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Holdeman LV, Cato EP, Moore WEC (1977) ‘Anaerobe laboratory manual.’ 4th edn. (Virginia Polytechnic Institute and State University: Blacksburg)

Hume ID (1982) ‘Digestive physiology and nutrition of marsupials.’ (Cambridge University Press: Cambridge)

Hungate RE (1969) A roll-tube method for the cultivation of strict anaerobes. In ‘Methods in microbiology’. (Eds JR Norris, DW Ribbons) pp. 117–132. (Academic Press: London)

Joblin KN (1999) Ruminal acetogens and their potential to lower ruminant methane emissions. Australian Journal of Agricultural Research 50, 1307–1313.
Crossref | GoogleScholarGoogle Scholar | open url image1

Joblin KN, Naylor GE, Williams AG (1990) Effects of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Applied and Environmental Microbiology 56, 2287–2295.
CAS | PubMed |
open url image1

Karch H, Meyer T (1989) Single primer pair for amplifying segments of distinct Shiga-like-toxin genes by polymerase chain-reaction. Journal of Clinical Microbiology 27, 2751–2757.
CAS | PubMed |
open url image1

Kempton TJ, Murray RM, Leng RA (1976) Methane production and digestibility measurements in grey kangaroo and sheep. Australian Journal of Biological Sciences 29, 209–214.
CAS | PubMed |
open url image1

Klieve AV, Holroyd RG, Turner AF, Lindsay JA (1998) Rumen bacterial and protozoal populations in cattle being relocated in tropical Queensland. Australian Journal of Agricultural Research 49, 1153–1159.
Crossref | GoogleScholarGoogle Scholar | open url image1

Klieve AV, Hennessey D, Ouwerkerk D, Forster RJ, Mackie RI, Attwood GT (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Journal of Applied Microbiology 95, 621–630.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Klieve AV, O’Leary MN, McMillen L, Ouwerkerk D (2007) Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet. Journal of Applied Microbiology 103, 2065–2073.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lane DJ (1991) 16S/23S rRNA sequencing. In ‘Nucleic acid techniques in bacterial systematics’. (Eds E Stackebrandt, M Goodfellow) pp. 115–175. (Academic Press: Chichester, UK)

Leaphart AB, Lovell CR (2001) Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Applied and Environmental Microbiology 67, 1392–1395.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ludwig W, Strunk O, Westram R, Richter L, Meier H , et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Research 32, 1363–1371.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mackie RI, Bryant MP (1994) Acetogenesis and the rumen: syntrophic relationships. In ‘Acetogenesis’. (Ed. HL Drake) pp. 331–364. (Chapman and Hall: New York)

Mackie RI, McSweeney CS, Klieve AV (2002) Microbial ecology of the ovine rumen. In ‘Sheep nutrition’. (Eds M Freer, H Dove) pp. 71–94. (CSIRO Publishing: Melbourne)

Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR , et al. (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Research 28, 173–174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

NGGIC (2007) ‘National greenhouse gas inventory 2005 with methodology supplement.’ (Environment Australia: Canberra)

Nollet L, Vande Velde I, Verstraete W (1997) Effect of the addition of Peptostreptococcus productus ATCC35244 on the gastro-intestinal microbiota and its activity, as simulated in an in vitro simulator of the human gastro-intestinal tract. Applied Microbiology and Biotechnology 48, 99–104.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ogimoto K, Imai S (1981) ‘Atlas of rumen microbiology.’ (Japan Scientific Societies Press: Tokyo)

Ouwerkerk D, Klieve AV (2001) Bacterial diversity within feedlot manure. Anaerobe 7, 59–66.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ouwerkerk D, Klieve AV, Forster RJ (2002) Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. Journal of Applied Microbiology 92, 753–758.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ouwerkerk D, Klieve AV, Forster RJ, Templeton JM, Maguire AJ (2005) Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus. Letters in Applied Microbiology 41, 327–333.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ovreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for the 16S rRNA. Applied and Environmental Microbiology 63, 3367–3373.
PubMed |
open url image1

Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sar C, Mwenya B, Santoso B, Takaura K, Morikawa R, Isogai N, Asakura Y, Toride Y, Takahashi J (2005) Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Animal Feed Science and Technology 118, 295–306.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Stackebrandt E, Charfreitag O (1990) Partial 16S rRNA primary structure of five actinomyces species: phylogenetic implications and development of an actinomyces israelii-specific oligonucleotide probe. Journal of General Microbiology 136, 27–43. open url image1

Swofford DL (1998) ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.’ (Sinauer Associates: Sunderland, MA)

Teather RM (1982) Maintenance of laboratory strains of obligately anaerobic rumen bacteria. Applied and Environmental Microbiology 44, 499–501.
CAS | PubMed |
open url image1

von Engelhardt W, Wolter S, Lawrenz H, Hemsley JA (1978) Production of methane in two non-ruminant herbivores. Comparative Biochemistry and Physiology. A. Comparative Physiology 60, 309–311.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wetzel AN, LeJeune JT (2007) Isolation of Eschericia coli O157:H7 strains that do not produce Shiga toxin from bovine, avian and environmental sources. Letters in Applied Microbiology 45, 504–507.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wolin MJ, Miller TL, Stewart CS (1997) Microbe–microbe interactions. In ‘The rumen microbial ecosystem’. (Eds PN Hobson, CS Stewart) pp. 467–488. (Chapman and Hall: London)

Yu Z, Forster RJ (2005) Nucleic acid extraction, oligonucleotide probes, and PCR methods. In ‘Methods in gut microbial ecology for ruminants’. (Eds HPS Makkar, CS McSweeney) pp. 81–104. (Springer Academic Press: Dortrecht, The Netherlands)