Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
ASEG Extended Abstracts ASEG Extended Abstracts Society
ASEG Extended Abstracts
RESEARCH ARTICLE

Extended imaging conditions for passive seismic data

Ben Witten and Jeffrey Shragge

ASEG Extended Abstracts 2015(1) 1 - 4
Published: 2015

Abstract

Seismic monitoring at injection sites (e.g., CO2 sequestration, hydraulic fracturing) has become an increasingly common tool amongst oil and gas producers. The information obtained from these data is often limited to seismic event properties (e.g., location, initiation time, moment tensor), the accuracy of which greatly depends on the assumed or estimated elastic velocity models. However, estimating accurate 3D velocity models from passive array data remains a challenging problem. Extended imaging conditions (eICs) for passive wave-equation imaging algorithms represent a key step towards generating – and verifying – elastic velocity models. By extending imaging conditions away from zero-lag in time and space we can better evaluate the focusing of a given event based on the principle that waves focus at zero lag only when the velocity models are "correct". We demonstrate that given an elastic medium and multi-component recordings, we can propagate and correlate microseismic P- and S-wavefield modes to compute eICs for P- and S- velocity perturbations. We observe that the maximum correlation deviates from the zero-lag in time and space for a P/S cross-correlation imaging condition when using an incorrect P- and/or S-wave velocity, and thus there is sensitivity to velocity error not observable when using individual wavefield components.

https://doi.org/10.1071/ASEG2015ab225

© ASEG 2015

PDF (525 KB) Export Citation

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email