Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Molecular phylogenetic analysis of Australian arid-zone oniscidean isopods (Crustacea : Haloniscus) reveals strong regional endemicity and new putative species

Michelle T. Guzik https://orcid.org/0000-0002-4947-9353 A H , Danielle N. Stringer A , Nicholas P. Murphy B , Steven J. B. Cooper A C , Stefano Taiti D E , Rachael A. King A C , William F. Humphreys F G and Andrew D. Austin A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, SA 5005, Australia.

B Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Vic. 3086, Australia.

C South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

D Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino Florence, Italy.

E Museo di Storia Naturale dell’Università, Sezione di Zoologia La Specola’ Via Romana 17, 50125 Florence, Italy.

F Western Australian Museum, Welshpool DC, WA 6986, Australia.

G School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia.

H Corresponding author. Email: michelle.guzik@adelaide.edu.au

Invertebrate Systematics 33(3) 556-574 https://doi.org/10.1071/IS18070
Submitted: 23 August 2018  Accepted: 21 January 2019   Published: 4 June 2019

Abstract

During the Miocene, central and western Australia shared a warm–wet environment that harboured a mesic rainforest fauna. Now, although the area is within the arid climate zone, it provides a habitat for highly diverse groundwater-associated invertebrates. Periods of global cooling and aridification during the late Miocene resulted in isolated desert refuges that retained ancient lineages. We aimed to characterise oniscidean isopod crustaceans from three refugial locations in the arid zone, and salt lakes, to identify new putative species. Extensive sampling and sequencing of the mitochondrial Cytochrome Oxidase c subunit 1 gene and the 18S rRNA gene were conducted. A molecular phylogenetic analysis of the oniscidean genus Haloniscus showed results consistent with a relictualisation hypothesis of widespread populations from across South Australia to Western Australia with subsequent geographic isolation and diversification of new species within habitats. We observed significant regional endemicity, but some lineages were not regionally monophyletic, pointing to past connectivity. We expand the range of Haloniscus and identify at least 26 putative species from arid-zone locations in Australia, with substantial phylogeographic structure within locations. These findings highlight the importance of relictual groundwater habitats as refugia for a diverse fauna representing early climatic history in Australia’s arid zone.

Additional keywords: CO1, 18S rRNA gene, groundwater, isolation, refugia.


References

Balke, M., Watts, C. H. S., Cooper, S. J. B., Humphreys, W. F., and Vogler, A. P. (2004). A highly modified stygobitic diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mtDNA sequences. Systematic Entomology 29, 59–67.
A highly modified stygobitic diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mtDNA sequences.Crossref | GoogleScholarGoogle Scholar |

Bayly, I. A. E., and Williams, W. D. (1966). Chemical and biological studies on some saline lakes of south-east Australia. Marine and Freshwater Research 17, 177–228.
Chemical and biological studies on some saline lakes of south-east Australia.Crossref | GoogleScholarGoogle Scholar |

Bohonak, A. J., and Jenkins, D. G. (2003). Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6, 783–796.
Ecological and evolutionary significance of dispersal by freshwater invertebrates.Crossref | GoogleScholarGoogle Scholar |

Brock, M. A. (Ed.) (1986). ‘Adaptation to Fluctuations Rather than to Extremes of Environmental Parameters.’ Limnology in Australia, Monographiae Biologicae. (Springer: Dordrecht.)

Byrne, M., Yeates, D. K., Joseph, L., Kearny, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyroll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |

Chilton, C. (1920). On a new isopodan genus (Family Oniscidae) from Lake Corangamite, Victoria. Proceedings of the Linnean Society of New South Wales 44, 723–734.

Cognetti, G., and Maltagliati, F. (2000). Biodiversity and adaptive mechanisms in brackish water fauna. Marine Pollution Bulletin 40, 7–14.
Biodiversity and adaptive mechanisms in brackish water fauna.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Davis, J., Pavlova, A., Thompson, R., and Sunnucks, P. (2013). Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19, 1970–1984.
Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar | 23526791PubMed |

de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation. In ‘Endless Forms: Species and Speciation’. (Eds D. J. Howard, and S. H. Berlocher.) pp. 57–75. (Oxford University Press: Oxford.)

de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America 102, 6600–6607.
Ernst Mayr and the modern concept of species.Crossref | GoogleScholarGoogle Scholar | 15851674PubMed |

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |

Edgar, R. C. (2004a). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
MUSCLE: a multiple sequence alignment method with reduced time and space complexity.Crossref | GoogleScholarGoogle Scholar | 15318951PubMed |

Edgar, R. C. (2004b). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

English, P., Spooner, N. A., Chappell, J., Questiaux, D. G., and Hill, N. G. (2001). Lake Lewis basin, central Australia: environmental evolution and OSL chronology. Quaternary International 83–85, 81–101.
Lake Lewis basin, central Australia: environmental evolution and OSL chronology.Crossref | GoogleScholarGoogle Scholar |

Faille, A., Tänzler, R., and Toussaint, E. F. A. (2015). On the way to speciation: shedding light on the karstic phylogeography of the microendemic cave beetle Aphaenops cerberus in the Pyrenees. The Journal of Heredity 106, 692–699.
| 26428282PubMed |

Fensham, R. J., and Fairfax, R. J. (2003). Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetlands Ecology and Management 11, 343–362.
Spring wetlands of the Great Artesian Basin, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Gibert, J., and Deharveng, L. (2002). Subterranean ecosystems: a truncated functional biodiversity. A.I.B.S. Bulletin 52, 473–481.

Gotch, T.B., Adams, M., Murphy, N.P., and Austin, A.D. (2008). A molecular systematic overview of wolf spiders associated with Great Artesian Basin springs in South Australia: evolutionary affinities and an assessment of metapopulation structure in two species. Invertebrate Systematics 22, 151–165.
A molecular systematic overview of wolf spiders associated with Great Artesian Basin springs in South Australia: evolutionary affinities and an assessment of metapopulation structure in two species.Crossref | GoogleScholarGoogle Scholar |

Gouws, G., and Stewart, B. A. (2007). From genetic structure to wetland conservation: a freshwater isopod Paramphisopus palustris (Phreatoicidea: Amphisopidae) from the Swan Coastal Plain, Western Australia. Hydrobiologia 589, 249–263.
From genetic structure to wetland conservation: a freshwater isopod Paramphisopus palustris (Phreatoicidea: Amphisopidae) from the Swan Coastal Plain, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Gouws, G., and Stewart, B. A. (2013). Molecular species boundaries in the phreatoicidean genus Amphisopus (Isopoda: Amphisopidae) and evidence for a new freshwater isopod species from Western Australia. Invertebrate Systematics 27, 173–185.
Molecular species boundaries in the phreatoicidean genus Amphisopus (Isopoda: Amphisopidae) and evidence for a new freshwater isopod species from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Greenslade, P., (1985). Terrestrial invertebrates of the mound spring bores, creek beds and other habitats. South Australia’s mound springs. Nature Conservation Society of South Australia Inc, Adelaide, pp.64–77.

Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., and Cho, J.-L. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., Muirhead, K. A., and Tomlinson, M. (2011). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?Crossref | GoogleScholarGoogle Scholar |

Guzik, M. T., Adams, M., Murphy, N. P., Cooper, S. J. B., and Austin, A. D. (2012). Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes). PLoS One 7, e37642.
| 22815684PubMed |

Harvey, M. S. (2002). Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism among the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 3934395PubMed |

Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature 405, 907–913.
The genetic legacy of the Quaternary ice ages.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Humphreys, W. (1993). The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range peninsula, Western Australia. Records of the Western Australian Museum 45, 165–192.

Humphreys, W. F. (1994). The subterranean fauna of the Cape Range coastal plain, northwestern Australia. Report to the Australian Heritage Commission and the Western Australian Heritage Committee. 202 pp. Western Australian Museum, unpublished report.

Humphreys, W. F. (1999). Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In ‘The Other 99%. The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder, and D. Lunney.) Vol. 2088, pp. 219–227. (Transactions of the Royal Society of New South Wales: Sydney.)

Humphreys, W. F. (2000). Relict faunas and their derivation. In ‘Ecosystems of the World. Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) Vol. 30, pp. 417–432. (Elsevier: Amsterdam.)

Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum 64, 63–83.
Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2006). Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54, 115–132.
Aquifers: the ultimate groundwater-dependent ecosystems.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2008). Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22, 85–101.
Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2009). Hydrogeology and groundwater ecology: does each inform the other? Hydrogeology 17, 5–21.

Humphreys, W. F. (2017). ‘Australasian Subterranean Biogeography.’ (CRC Press: Boca Raton, FL.)

IUCN (2012). ‘IUCN Red List Categories and Criteria: Version 3.1.’ (IUCN: Gland.)

Javidkar, M., Cooper, S. J. B., Humphreys, W. F., King, R. A., Judd, S., and Austin, A. D. (2018). Biogeographic history of subterranean isopods from groundwater calcrete islands in Western Australia. Zoologica Scripta 47, 206–220.
Biogeographic history of subterranean isopods from groundwater calcrete islands in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., and Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638.
| 28108445PubMed |

Kekkonen, M., and Hebert, P. D. N. (2014). DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14, 706–715.
DNA barcode-based delineation of putative species: efficient start for taxonomic workflows.Crossref | GoogleScholarGoogle Scholar | 24479435PubMed |

Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G. T., Hopper, S. D., and Franklin, S. E. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21, 393–404.
Refugia: identifying and understanding safe havens for biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 7463489PubMed |

King, R. K. (2009). Two new genera and species of chiltoniid amphipods (Crustacea: Amphipoda: Talitroidea) from freshwater mound springs in South Australia. Zootaxa 2293, 35–52.

King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., and Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of Crustacean Biology 32, 465–488.
Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Kodric-Brown, A., and Brown, J. H. (1993). Highly structured fish communities in Australian desert springs. Ecology 74, 1847–1855.
Highly structured fish communities in Australian desert springs.Crossref | GoogleScholarGoogle Scholar |

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006a). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.Crossref | GoogleScholarGoogle Scholar | 16647275PubMed |

Lefébure, T., Douady, C. J., Gouy, M., Trontelj, P., Briolay, J., and Gibert, J. (2006b). Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology 15, 1797–1806.
Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments.Crossref | GoogleScholarGoogle Scholar | 16689899PubMed |

Leys, R., and Watts, C. H. S. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22, 217–225.
Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus.Crossref | GoogleScholarGoogle Scholar |

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
| 14761060PubMed |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), 2010, New Orleans, Louisiana’. pp. 1–8. (Institute of Electrical and Electronics Engineers (IEEE): Louisana)

Miralles, A., and Vences, M. (2013). New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS One 8, –p.e68242.
New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards.Crossref | GoogleScholarGoogle Scholar | 23874561PubMed |

Moritz, C., and Agudo, R. (2013). The future of species under climate change: resilience or decline? Science 341, 504–508.
The future of species under climate change: resilience or decline?Crossref | GoogleScholarGoogle Scholar | 23908228PubMed |

Murphy, N. P., Adams, M., and Austin, A. D. (2009). Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Molecular Ecology 18, 109–122.
| 19140968PubMed |

Murphy, N. P., Guzik, M. T., and Worthington Wilmer, J. (2010). The influence of landscape on population structure of four invertebrates in groundwater springs. Freshwater Biology 55, 2499–2509.
The influence of landscape on population structure of four invertebrates in groundwater springs.Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., Breed, M. F., Guzik, M. T., Cooper, S. J. B., and Austin, A. D. (2012). Trapped in desert springs: phylogeography of Australian desert spring snails. Journal of Biogeography 39, 1573–1582.
Trapped in desert springs: phylogeography of Australian desert spring snails.Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., Adams, M., Guzik, M. T., and Austin, A. D. (2013). Extraordinary micro-endemism in Australian desert spring amphipods. Molecular Phylogenetics and Evolution 66, 645–653.
Extraordinary micro-endemism in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar | 23142695PubMed |

Murphy, N. P., Guzik, M. T., Cooper, S. J., and Austin, A. D. (2015a). Desert spring refugia: museums of diversity or evolutionary cradles? Zoologica Scripta 44, 693–701.
Desert spring refugia: museums of diversity or evolutionary cradles?Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., King, R. A., and Delean, S. (2015b). Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebrate Systematics 29, 457–467.
Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar |

Paz, A., and Crawford, A. J. (2012). Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians. Journal of Biosciences 37, 887–896.
Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians.Crossref | GoogleScholarGoogle Scholar | 23107924PubMed |

Ponder, W. F. (1995). Mound spring snails of the Australian Great Artesian Basin. In ‘The Conservation Biology of Molluscs’. (Ed. E. A. Kay.) pp. 13–18. (IUCN: Gland.)

Ponder, W. F., Colgan, D. J., Terzis, T., Clark, S. A., and Miller, A. (1996). Three new morphologically and genetically determined species of hydrobiid gastropods from Dalhousie Springs, northern South Australia, with the description of a new genus. Molluscan Research 17, 49–109.
Three new morphologically and genetically determined species of hydrobiid gastropods from Dalhousie Springs, northern South Australia, with the description of a new genus.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Modeltest: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 9918953PubMed |

Provan, J., and Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution 23, 564–571.
Phylogeographic insights into cryptic glacial refugia.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012a). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, automatic barcode gap discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Puillandre, N., Modica, M. V., and Zhang, Y. (2012b). Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21, 2671–2691.
Large-scale species delimitation method for hyperdiverse groups.Crossref | GoogleScholarGoogle Scholar | 22494453PubMed |

Rambaut, A., Drummond, A. J.,, Xie, D., Baele, G., and Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Ratnasingham, S., and Hebert, P. D. N. (2013). A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS One 8, –p.e66213.
A DNA-based registry for all animal species: the Barcode Index Number (BIN) system.Crossref | GoogleScholarGoogle Scholar | 24358363PubMed |

Rivera, M. A., Howarth, F. G., Taiti, S., and Roderick, G. K. (2002). Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Molecular Phylogenetics and Evolution 25, 1–9.
Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts?Crossref | GoogleScholarGoogle Scholar | 12383746PubMed |

Sauer, J., and Hausdorf, B. (2012). A comparison of DNA‐based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28, 300–316.
A comparison of DNA‐based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Taiti, S., and Humphreys, W. F. (2001). New aquatic Oniscidea (Crustacea, Isopoda) from groundwater calcretes of Western Australia. Records of the Western Australian Museum 64, 133–151.
New aquatic Oniscidea (Crustacea, Isopoda) from groundwater calcretes of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Taiti, S., and Schotte, M. (Eds) (2016). Haloniscus Chilton, 1920. World Marine, Freshwater and Terrestrial Isopod Crustaceans Database (2008 onwards).

Taiti, S., and Xue, Z. (2012). The cavernicolous genus Trogloniscusnomen novum, with descriptions of four new species from southern China (Crustacea, Oniscidea, Styloniscidae). Tropical Zoology 25, 183–209.
The cavernicolous genus Trogloniscusnomen novum, with descriptions of four new species from southern China (Crustacea, Oniscidea, Styloniscidae).Crossref | GoogleScholarGoogle Scholar |

Taiti, S., Ferrara, F., and Iliffe, T. M. (1995). A new species of Haloniscus Chilton, 1920 from New Caledonia (Isopoda, Oniscidea). Crustaceana 68, 321–328.
A new species of Haloniscus Chilton, 1920 from New Caledonia (Isopoda, Oniscidea).Crossref | GoogleScholarGoogle Scholar |

Talavera, G., Dincă, V., and Vila, R. (2013). Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4, 1101–1110.
Factors affecting species delimitations with the GMYC model: insights from a butterfly survey.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57–86.

Trontelj, P., and Fišer, C. (2009). Cryptic species diversity should not be trivialised. Systematics and Biodiversity 7, 1–3.
Cryptic species diversity should not be trivialised.Crossref | GoogleScholarGoogle Scholar |

Verovnik, R., Sket, B., and Trontelj, P. (2004). Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda). Molecular Ecology 13, 1519–1532.
Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda).Crossref | GoogleScholarGoogle Scholar | 15140095PubMed |

Verovnik, R., Sket, B., and Trontelj, P. (2005). The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology 14, 4355–4369.
The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity.Crossref | GoogleScholarGoogle Scholar | 16313598PubMed |

Watts, C. H. S., and Humphreys, W. F. (2006). Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts & Humphreys, from underground waters in Australia. Transactions of the Royal Society of South Australia 130, 123–185.
Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts & Humphreys, from underground waters in Australia.Crossref | GoogleScholarGoogle Scholar |

Watts, C. H. S., and Humphreys, W. F. (2009). Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. Transactions of the Royal Society of South Australia 133, 62–107.
Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia.Crossref | GoogleScholarGoogle Scholar |

Wells, A. T., and Moss, F. J. (1983). The Ngalia Basin, Northern Territory: stratigraphy and structure. Bulletin 212. Bureau of Mineral Resources, Australia. , .

Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31, 93–104.
Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 11975347PubMed |

Williams, W. D. (1983). On the ecology of Haloniscus searlei (Isopoda, Oniscoidea), an inhabitant of Australian salt lakes. Hydrobiologia 105, 137–142.
On the ecology of Haloniscus searlei (Isopoda, Oniscoidea), an inhabitant of Australian salt lakes.Crossref | GoogleScholarGoogle Scholar |

Wilson, G. D. F., and Keable, S. J. (1999). A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia. Zoological Journal of the Linnean Society 126, 51–79.
A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Wilson, G. D., Humphrey, C. L., Colgan, D. J., Gray, K. A., and Johnson, R. N. (2009). Monsoon-influenced speciation patterns in a species flock of Eophreatoicus Nicholls (Isopoda; Crustacea). Molecular Phylogenetics and Evolution 51, 349–364.
Monsoon-influenced speciation patterns in a species flock of Eophreatoicus Nicholls (Isopoda; Crustacea).Crossref | GoogleScholarGoogle Scholar | 19233300PubMed |

Zeidler, W. (1991). A new genus and species of phreatic amphipod (Crustacea: Amphipoda) belonging in the “Chiltonia” generic group, from Dalhousie Springs, South Australia. Transactions of the Royal Society of South Australia 115, 177–187.

Zeidler, W. (1997). A new species of freshwater amphipod, Austrochiltonia dalhousiensis sp. nov. (Crustacea: Amphipoda: Hyalellidae) from Dalhousie Springs, South Australia. Transactions of the Royal Society of South Australia 121, 29–42.

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 23990417PubMed |