Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Convergent evolution of sexually dimorphic glands in an amphi-Pacific harvestman family

Guilherme Gainett https://orcid.org/0000-0002-9040-4863 A D , Rodrigo H. Willemart B , Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 C and Prashant P. Sharma https://orcid.org/0000-0002-2328-9084 A
+ Author Affiliations
- Author Affiliations

A Department of Integrative Biology, University of Wisconsin–Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.

B Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil.

C Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

D Corresponding author. Email: guilherme.gainett@wisc.edu

Invertebrate Systematics 34(8) 871-892 https://doi.org/10.1071/IS20010
Submitted: 8 March 2020  Accepted: 16 July 2020   Published: 16 November 2020

Abstract

Sexually dimorphic traits are widespread in animals, and include sex-specific weapons, ornamentation and, although less noticed, glands and associated structures. In arachnids, certain lineages of the order Opiliones exhibit diverse forms of dimorphism in the armature and length of appendages (common in Laniatores), as well as in the presence of sexually dimorphic glands (mostly investigated in Cyphophthalmi), positing harvestmen as promising models to study sexual dimorphism. Whereas the evolution and ecological significance of armature have been the focus of recent attention, sexually dimorphic glands remain understudied in groups other than Cyphophthalmi, despite being widespread in Opiliones. We therefore selected the amphi-Pacific family Zalmoxidae as an ideal taxon to investigate the evolutionary dynamics of this trait. We first describe four new species of Palaeotropical Zalmoxis, including a species with sexually dimorphic glands, and describe the morphology of zalmoxid species with sexually dimorphic glands using scanning electron microscopy. Using a previously assembled six-locus dataset supplemented with new terminals, and applying stochastic character mapping, we infer that sexually dimorphic glands evolved once in the Neotropics and at least four times in the Palaeotropic zalmoxids, revealing the evolutionary lability of this trait.

Additional keywords: Arachnida, Laniatores, Opiliones, sexual dimorphism, stochastic character mapping, Zalmoxidae.


References

Acosta, L. E., Pérez-González, A., and Tourinho, A. L. (2007). Methods for taxonomic study. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 494–510. (Harvard University Press: Cambridge, MA, USA.)

Alegre, A., Gainett, G., Iborra, G. L., and Giribet, G. (2019). Two new species of Manahunca, redescription of its type species, current conservation status of the genus and a survey of male glands in Stenostygninae (Opiliones: Laniatores: Biantidae). Zootaxa 4686, 83–111.
Two new species of Manahunca, redescription of its type species, current conservation status of the genus and a survey of male glands in Stenostygninae (Opiliones: Laniatores: Biantidae).Crossref | GoogleScholarGoogle Scholar |

Andersson, M. (1994). ‘Sexual Selection.’ (Princeton University Press: Princeton, NJ, USA.)

Buzatto, B. A., and Machado, G. (2014). Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones). Behavioural Processes 109, 2–13.
Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar | 24983786PubMed |

Buzatto, B. A., Requena, G. S., Lourenço, R. S., Munguía-Steyer, R., and Machado, G. (2011). Conditional male dimorphism and alternative reproductive tactics in a Neotropical arachnid (Opiliones). Evolutionary Ecology 25, 331–349.
Conditional male dimorphism and alternative reproductive tactics in a Neotropical arachnid (Opiliones).Crossref | GoogleScholarGoogle Scholar |

Buzatto, B. A., Tomkins, J. L., Simmons, L. W., and Machado, G. (2014). Correlated evolution of sexual dimorphism and male dimorphism in a clade of Neotropical harvestmen. Evolution 68, 1671–1686.
Correlated evolution of sexual dimorphism and male dimorphism in a clade of Neotropical harvestmen.Crossref | GoogleScholarGoogle Scholar | 24593685PubMed |

Campbell, G. (2002). Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418, 781–785.
Distalization of the Drosophila leg by graded EGF-receptor activity.Crossref | GoogleScholarGoogle Scholar | 12181568PubMed |

Dias, J. M., and Willemart, R. H. (2016). Do sexually dimorphic glands in the harvestman Gryne perlata (Arachnida: Opiliones) release contact pheromones during mating? European Journal of Entomology 113, 184–191.
Do sexually dimorphic glands in the harvestman Gryne perlata (Arachnida: Opiliones) release contact pheromones during mating?Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
MUSCLE: a multiple sequence alignment method with reduced time and space complexity.Crossref | GoogleScholarGoogle Scholar | 15318951PubMed |

Emlen, D. J., Hunt, J., and Simmons, L. W. (2005). Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint. American Naturalist 166, S42–S68.
Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint.Crossref | GoogleScholarGoogle Scholar | 16224711PubMed |

Fernandes, N. D. S., and Willemart, R. H. (2014). Neotropical harvestmen (Arachnida, Opiliones) use sexually dimorphic glands to spread chemicals in the environment. Comptes Rendus Biologies 337, 269–275.
Neotropical harvestmen (Arachnida, Opiliones) use sexually dimorphic glands to spread chemicals in the environment.Crossref | GoogleScholarGoogle Scholar |

Fritz, S. A., and Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24, 1042–1051.
Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits.Crossref | GoogleScholarGoogle Scholar | 20184650PubMed |

Galindo, M. I., Bishop, S. A., Greig, S., and Couso, J. P. (2002). Leg patterning driven by proximal–distal interactions and EGFR signaling. Science 297, 256–259.
Leg patterning driven by proximal–distal interactions and EGFR signaling.Crossref | GoogleScholarGoogle Scholar | 12114628PubMed |

Goodnight, C. J., and Goodnight, M. L. (1983). Opiliones of the family Phalangodidae found in Costa Rica. The Journal of Arachnology 11, 201–242.

Huelsenbeck, J. P., Nielsen, R., and Bollback, J. P. (2003). Stochastic mapping of morphological characters. Systematic Biology 52, 131–158.
Stochastic mapping of morphological characters.Crossref | GoogleScholarGoogle Scholar | 12746144PubMed |

Kojima, T. (2004). The mechanism of Drosophila leg development along the proximodistal axis. Development, Growth & Differentiation 46, 115–129.
The mechanism of Drosophila leg development along the proximodistal axis.Crossref | GoogleScholarGoogle Scholar |

Kunz, K., Garbe, S., and Uhl, G. (2012). The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae). Animal Behaviour 83, 511–517.
The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae).Crossref | GoogleScholarGoogle Scholar |

Kunz, K., Michalik, P., and Uhl, G. (2013). Cephalic secretion release in the male dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae): an ultrastructural analysis. Arthropod Structure & Development 42, 477–482.
Cephalic secretion release in the male dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae): an ultrastructural analysis.Crossref | GoogleScholarGoogle Scholar |

Kury, A. B., and Pérez-González, A. (2007). Taxonomy: Zalmoxidae. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 243–246. (Harvard University Press: Cambridge, MA, USA.)

Maelfait, J.-P., Keer, R. D., and Meester, R. D. (1990). Genetic background of the polymorphism of Oedothorax gibbosus (Blackwall) (Linyphiidae, Araneae). Revue Arachnologique 9, 29–34.

Martens, J. (1973). Feinstruktur der Cheliceren-Drüse von Nemastoma dentigerum Canestrini (Opiliones, Nemastomatidae). Zeitschrift für Zellforschung und Mikroskopische Anatomie 136, 121–137.
Feinstruktur der Cheliceren-Drüse von Nemastoma dentigerum Canestrini (Opiliones, Nemastomatidae).Crossref | GoogleScholarGoogle Scholar | 4685226PubMed |

Murayama, G. P., and Willemart, R. H. (2015). Mode of use of sexually dimorphic glands in a Neotropical harvestman (Arachnida: Opiliones) with paternal care. Journal of Natural History 49, 1937–1947.
Mode of use of sexually dimorphic glands in a Neotropical harvestman (Arachnida: Opiliones) with paternal care.Crossref | GoogleScholarGoogle Scholar |

Painting, C. J., Probert, A. F., Townsend, D. J., and Holwell, G. I. (2015). Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen. Scientific Reports 5, 16368.
Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen.Crossref | GoogleScholarGoogle Scholar | 26542456PubMed |

Pérez-González, A., Sharma, P. P., and Proud, D. N. (2016). Morphological tricks and blessed genitalia: rectifying the family placement of Fijicolana tuberculata (Opiliones: Laniatores: Zalmoxidae). Zootaxa 4061, 253–260.
Morphological tricks and blessed genitalia: rectifying the family placement of Fijicolana tuberculata (Opiliones: Laniatores: Zalmoxidae).Crossref | GoogleScholarGoogle Scholar | 27395497PubMed |

Proud, D. N., and Felgenhauer, B. E. (2011). Ultrastructure of the sexually dimorphic basitarsal glands of leg I in manaosbiid harvestmen (Opiliones, Laniatores). Journal of Morphology 272, 872–882.
Ultrastructure of the sexually dimorphic basitarsal glands of leg I in manaosbiid harvestmen (Opiliones, Laniatores).Crossref | GoogleScholarGoogle Scholar | 21538473PubMed |

Proud, D. N., and Felgenhauer, B. E. (2013). Ultrastructure of the sexually dimorphic tarsal glands and tegumental glands in gonyleptoid harvestmen (Opiliones, Laniatores). Journal of Morphology 274, 1203–1215.
Ultrastructure of the sexually dimorphic tarsal glands and tegumental glands in gonyleptoid harvestmen (Opiliones, Laniatores).Crossref | GoogleScholarGoogle Scholar | 24288806PubMed |

Rambla, M. (1980). Neoteny in Opiliones. In ‘Verhandlungen. Internationaler Arachnologen Kongr. abgehalten an der Universität für Bodenkultur Wien’. (Ed. J. Gruber.) pp. 489–492. (Verlag H. Egermann: Vienna, Austria.)

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |

Roewer, C. F. (1949). Über Phalangodiden I. (Subfam. Phalangodinae, Tricommatinae, Samoinae.) Weitere Weberknechte XIII. Senckenbergiana 30, 11–61.

Schliep, K., Potts, A. J., Morrison, D. A., and Grimm, G. W. (2017). Intertwining phylogenetic trees and networks. Methods in Ecology and Evolution 8, 1212–1220.
Intertwining phylogenetic trees and networks.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P. (2012). New Australasian Zalmoxidae (Opiliones: Laniatores) and a new case of male polymorphism in Opiliones. Zootaxa 3236, 1–35.
New Australasian Zalmoxidae (Opiliones: Laniatores) and a new case of male polymorphism in Opiliones.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2012). Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. Proceedings of the Royal Society of London – B. Biological Sciences 279, 3501–3509.
Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Kury, A. B., and Giribet, G. (2011). Zalmoxidae (Arachnida: Opiliones: Laniatores) of the Paleotropics: a catalogue of Southeast Asian and Indo-Pacific species. Zootaxa 2972, 37–58.

Sharma, P. P., Buenavente, P. A. C., Clouse, R. M., Diesmos, A. C., and Giribet, G. (2012). Forgotten gods: Zalmoxidae of the Philippines and Borneo (Opiliones: Laniatores). Zootaxa 3280, 29–55.
Forgotten gods: Zalmoxidae of the Philippines and Borneo (Opiliones: Laniatores).Crossref | GoogleScholarGoogle Scholar |

Šilhavy, V. (1978). Minuides milleri sp. n., an opilionid with an unusual manner of stridulation (Phalangodidae, Phalangodinae). Československá Společnost Entomologická. Acta Entomologica Bohemoslovaca 75, 58–63.

Stamatakis, A. (2014). RAxML version 8 – a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8 – a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Suzuki, S. (1982). Contributions to the taxonomy and zoogeography of the Opiliones of the Philippines, Bismarck and Solomon Islands. With an appendix on some related species from the Moluccas and Sumatra. Steenstrupia (Copenhagen) 8, 181–225.

Vahed, K. (1998). The function of nuptial feeding in insects: a review of empirical studies. Biological Reviews of the Cambridge Philosophical Society 73, 43–78.
The function of nuptial feeding in insects: a review of empirical studies.Crossref | GoogleScholarGoogle Scholar |

Vanacker, D., Maelfait, J.-P., and Baert, L. (2001). The male dimorphism in the dwarf spider Oedothorax gibbosus (Blackwall, 1841) (Erigoninae, Linyphiidae, Araneae): results of laboratory rearing experiments. Belgian Journal of Zoology 131, 39–44.

Willemart, R. H., Chelini, M. C., de Andrade, R., and Gnaspini, P. (2007). An ethological approach to a SEM survey on sensory structures and tegumental gland openings of two neotropical harvestmen (Arachnida, Opiliones, Gonyleptidae). The Italian Journal of Zoology 74, 39–54.
An ethological approach to a SEM survey on sensory structures and tegumental gland openings of two neotropical harvestmen (Arachnida, Opiliones, Gonyleptidae).Crossref | GoogleScholarGoogle Scholar |

Willemart, R. H., Osses, F., Chelini, M.-C., Macías-Ordóñez, R., and Machado, G. (2009). Sexually dimorphic legs in a neotropical harvestman (Arachnida, Opiliones): ornament or weapon? Behavioural Processes 80, 51–59.
Sexually dimorphic legs in a neotropical harvestman (Arachnida, Opiliones): ornament or weapon?Crossref | GoogleScholarGoogle Scholar | 18929628PubMed |

Willemart, R. H., Pérez-González, A., Farine, J.-P., and Gnaspini, P. (2010). Sexually dimorphic tegumental gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species. Journal of Morphology 271, 641–653.
Sexually dimorphic tegumental gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species.Crossref | GoogleScholarGoogle Scholar | 20027634PubMed |

Wyatt, T. D. (2012). ‘Pheromones and Animal Behavior: Chemical Signals and Signatures’, 2nd edn. (Cambridge University Press: Cambridge, UK.) https://doi.org/10.1017/CBO9781139030748

Zatz, C., Werneck, R. M., Macías-Ordóñez, R., and Machado, G. (2011). Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones). Behavioral Ecology and Sociobiology 65, 995–1005.
Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |