Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Morphology, genetics, and historical records support the synonymy of two ascidian species and suggest their spread throughout areas of the Southern Hemisphere

Anabela Taverna https://orcid.org/0000-0001-9433-1190 A B D , María Carla de Aranzamendi https://orcid.org/0000-0003-4442-0384 A B D , Tamara Maggioni A B , Gastón Alurralde https://orcid.org/0000-0002-0332-3978 A B , Xavier Turon C and Marcos Tatián https://orcid.org/0000-0002-9092-9184 A B D
+ Author Affiliations
- Author Affiliations

A Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Avenida Vélez Sarsfield 299, Córdoba, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Avenida Vélez Sarsfield 299, Córdoba, Argentina.

C Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés cala St Francesc, 14, E-17300 Blanes, Catalunya, Spain.

D Corresponding authors. Email: anabelataverna@gmail.com; mcdearanzamendi@conicet.gov.ar; marcostatian@gmail.com

Invertebrate Systematics 35(6) 675-687 https://doi.org/10.1071/IS20060
Submitted: 12 August 2020  Accepted: 4 February 2021   Published: 13 August 2021

Abstract

Taxonomic uncertainties and the lack of ecological knowledge can hinder the correct identification and the assignment of biogeographic status of marine species. The ascidian Asterocarpa humilis (Heller, 1878), originally described from New Zealand, has a broad distribution in shallow temperate areas of the Southern Hemisphere, having recently colonised areas of the Northern Hemisphere. A closely related species, Cnemidocarpa robinsoni Hartmeyer, 1916, has been reported in the South-Eastern Pacific and the South-Western Atlantic, and several authors considered it a junior synonym of A. humilis. We gathered for the first time morphological and genetic data from specimens from distant areas. We studied the morphology of specimens collected at seven locations of South America. We also re-examined specimens from museum collections and revised the available literature on these species. Genetic data were obtained from specimens from Argentina and compared with available sequences of A. humilis from Chile, New Zealand, England and France. Morphological and genetic analyses showed that all compared specimens were conspecific. Furthermore, specimens from different continents shared haplotypes and exhibited low genetic distance among them. These results, the biological characteristics of this ascidian, and its longstanding presence in different habitats from disjoint areas, allow us to question its native range. We support the idea that A. humilis is a cryptogenic and neocosmopolitan species that has been transported by maritime traffic through the Southern Hemisphere, revealing frequent processes of exchange through this wide area for more than a century, with presumably associated alterations in the marine biota.

Keywords: ascidian, cytochrome oxidase I gene, morphological analysis, neocosmopolitan species, South-Western Atlantic, tunicate


References

Alié, A., Hiebert, L. S., Simion, P., Scelzo, M., Prünster, M. M., Lotito, S., Delsuc, F., Douzery, E. J. P., Dantec, C., Lemaire, P., Darras, S., Kawamura, K., Brown, F. D., and Tiozzo, S. (2018). Convergent acquisition of nonembryonic development in styelid ascidians. Molecular Biology and Evolution 35, 1728–1743.
Convergent acquisition of nonembryonic development in styelid ascidians.Crossref | GoogleScholarGoogle Scholar | 29660002PubMed |

Alurralde, G., de Aranzamendi, M. C., Taverna, A., Maggioni, T., and Tatián, M. (2018). Not as clear as expected: what genetic data tell about Southern Hemisphere corellids (Ascidiacea: Phlebobranchia). Journal of Natural History 52, 2823–2831.
Not as clear as expected: what genetic data tell about Southern Hemisphere corellids (Ascidiacea: Phlebobranchia).Crossref | GoogleScholarGoogle Scholar |

Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 10331250PubMed |

Bishop, J. D., Roby, C., Yunnie, A. L., Wood, C. A., Lévêque, L., Turon, X., and Viard, F. (2013). The Southern Hemisphere ascidian Asterocarpa humilis is unrecognised but widely established in NW France and Great Britain. Biological Invasions 15, 253–260.
The Southern Hemisphere ascidian Asterocarpa humilis is unrecognised but widely established in NW France and Great Britain.Crossref | GoogleScholarGoogle Scholar |

Bishop, J. D., Wood, C. A., Yunnie, A. L., and Griffiths, C. A. (2015). Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast. Aquatic Invasions 10, 249–264.
Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast.Crossref | GoogleScholarGoogle Scholar |

Bouchemousse, S., Lévêque, L., Dubois, G., and Viard, F. (2016). Co-occurrence and reproductive synchrony do not ensure hybridization between an alien tunicate and its interfertile native congener. Evolutionary Ecology 30, 69–87.
Co-occurrence and reproductive synchrony do not ensure hybridization between an alien tunicate and its interfertile native congener.Crossref | GoogleScholarGoogle Scholar |

Bovien, P. (1921). Ascidiae from the Auckland and Campbell Islands (holosomatous forms). Papers from Dr. Th. Mortensen’s Pacific expedition 1914–1916 No. IV. Vidensk. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn 73, 33–47.

Brewin, B. I. (1946). Ascidians in the vicinity of the Portobello marine biological station, Otago Harbour. Transactions of the Royal Society of New Zealand 76, 87–131.

Brewin, B. I. (1948). Ascidians of the Hauraki Gulf. Part I. Transactions of the Royal Society of New Zealand 77, 115–138.

Brunetti, R., Gissi, C., Pennati, R., Caicci, F., Gasparini, F., and Manni, L. (2015). Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. Journal of Zoological Systematics and Evolutionary Research 53, 186–193.
Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis.Crossref | GoogleScholarGoogle Scholar |

Carlton, J. T. (1996). Biological invasions and cryptogenic species. Ecology 77, 1653–1655.
Biological invasions and cryptogenic species.Crossref | GoogleScholarGoogle Scholar |

Carlton, J. T. (1999). Molluscan invasions in marine and estuarine communities. Malacologia 41, 439–454.

Carlton, J. T. (2001). ‘Introduced Species in US Coastal Waters.’ (Pew Oceans Commissions: Washington, DC, USA.)

Carlton, J. T. (2009). Deep invasion ecology and the assembly of communities in historical time. In ‘Biological Invasions in Marine Ecosystems’. pp. 13–56. (Springer.)

Carlton, J. T., and Geller, J. B. (1993). Ecological roulette: the global transport of nonindigenous marine organisms. Science 261, 78–82.
Ecological roulette: the global transport of nonindigenous marine organisms.Crossref | GoogleScholarGoogle Scholar |

Castilla, J. C., Guiñez, R., Alvarado, J. L., Pacheco, C., and Varas, M. (2000). Distribution, population structure, population biomass and morphological characteristics of the tunicate Pyura stolonifera in the Bay of Antofagasta, Chile. Marine Ecology (Berlin) 21, 161–174.
Distribution, population structure, population biomass and morphological characteristics of the tunicate Pyura stolonifera in the Bay of Antofagasta, Chile.Crossref | GoogleScholarGoogle Scholar |

Castro, N., Ramalhosa, P., Jiménez, J., Costa, J. L., Gestoso, I., and Canning-Clode, J. (2020). Exploring marine invasions connectivity in a NE Atlantic island through the lens of historical maritime traffic patterns. Regional Studies in Marine Science 37, 101333.
Exploring marine invasions connectivity in a NE Atlantic island through the lens of historical maritime traffic patterns.Crossref | GoogleScholarGoogle Scholar |

Chapman, J. W., and Carlton, J. T. (1991). A test of criteria for introduced species: the global invasion by the isopod Synidotea laevidorsalis (Miers, 1881). Journal of Crustacean Biology 11, 386–400.
A test of criteria for introduced species: the global invasion by the isopod Synidotea laevidorsalis (Miers, 1881).Crossref | GoogleScholarGoogle Scholar |

Chapman, J. W., and Carlton, J. T. (1994). Predicted discoveries of the introduced isopod Synidotea laevidorsalis (Miers, 1881) Journal of Crustacean Biology 14, 700–714.
Predicted discoveries of the introduced isopod Synidotea laevidorsalis (Miers, 1881)Crossref | GoogleScholarGoogle Scholar |

Clarke, M., and Castilla, J. C. (2000). Dos nuevos registros de ascidias (Tunicata: Ascidiacea) para la costa continental de Chile. Revista Chilena de Historia Natural 73, 503–510.
Dos nuevos registros de ascidias (Tunicata: Ascidiacea) para la costa continental de Chile.Crossref | GoogleScholarGoogle Scholar |

Darling, J. A., and Carlton, J. T. (2018). A framework for understanding marine cosmopolitanism in the Anthropocene. Frontiers in Marine Science 5, 293.
A framework for understanding marine cosmopolitanism in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 31019910PubMed |

Dias, G. M., Abreu, A. G., Silva, F. O. M., and Solferini, V. N. (2009). Microgeographical differentiation between morphotypes of Trididemnum orbiculatum (Tunicata: Ascidiacea) in southeastern Brazil. Aquatic Biology 4, 243–252.
Microgeographical differentiation between morphotypes of Trididemnum orbiculatum (Tunicata: Ascidiacea) in southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Diehl, M. (1977). Ascidien des Argentinischen Schelfs aus den Grundtrawl-Fängen des FFS ‘Walther Herwig’ auf seiner dritten Südamerika-Expedition. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 74, 139–153.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Essl, F., Bacher, S., Genovesi, P., Hulme, P. E., Jeschke, J. M., Katsanevakis, S., Kowarik, I., Kühn, I., Pyšek, P., Rabitsch, W., Schindler, S., van Kleunen, M., Vilà, M., Wilson, J. R. U., and Richardson, D. M. (2018). Which taxa are alien? Criteria, applications, and uncertainties. Bioscience 68, 496–509.
Which taxa are alien? Criteria, applications, and uncertainties.Crossref | GoogleScholarGoogle Scholar |

Glasby, T., and Connell, S. (1999). Urban structures as marine habitats. Ambio 28, 595–598.

Glasby, T. M., Connell, S. D., Holloway, M. G., and Hewitt, C. L. (2007). Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Marine Biology 151, 887–895.
Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions?Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., and Catalano, S. A. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Hartmeyer, R. (1912). Die ascidien der Deutschen Tiefsee-Expedition. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer Valdivia 1898–1899, 225–392.

Hartmeyer, R. (1916). Neue und alte Styeliden aus der Sammlung des Berliner Museums. Mitteilungen aus dem Zoologischen Museum in Berlin 8, 203–230.

Hartmeyer, R. (1920). Ascidien von Juan Fernandez and Easter Island. In ‘Natural History of Juan Fernandez, Vol. 3’. (Ed. C. Skottsberg.) pp. 131–163. (Almqvist & Wiksells Boktryckeri: Uppsala, Sweden.)

Hartmeyer, R. (1922). Miscellanea ascidiologica. Mitteilungen aus dem Zoologischen Museum in Berlin 10, 301–323.

Hartmeyer, R., and Michaelsen, W. (1927). Zur Kenntnis phlebobranchiater und diktyobranchiater Ascidien. Mitteilungen aus dem Zoologischen Museum in Berlin 13, 159–196.

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – B. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Heller, C. (1878). Beitrage zur nahern Kenntniss der Tunicaten. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 77, 83–110.

Herdman, W. E. (1899). Descriptive catalogue of the Tunicata in the Australian Museum, Sydney, NSW. Australian Museum, Sydney 17, 1–135.

Hirose, M., Tochikubo, T., and Hirose, E. (2010). Taxonomic significance of tunic spicules in photosymbiotic ascidians: a quantitative and molecular evaluation. Journal of the Marine Biological Association of the United Kingdom 90, 1065.
Taxonomic significance of tunic spicules in photosymbiotic ascidians: a quantitative and molecular evaluation.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MrBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Kakkonen, J. E., Worsfold, T. M., Ashelby, C. W., Taylor, A., and Beaton, K. (2019). The value of regular monitoring and diverse sampling techniques to assess aquatic non-native species: a case study from Orkney. Management of Biological Invasions: International Journal of Applied Research on Biological Invasions 10, 46–79.
The value of regular monitoring and diverse sampling techniques to assess aquatic non-native species: a case study from Orkney.Crossref | GoogleScholarGoogle Scholar |

Kenworthy, J. M., Rolland, G., Samadi, S., and Lejeusne, C. (2018). Local variation within marinas: effects of pollutants and implications for invasive species. Marine Pollution Bulletin 133, 96–106.
Local variation within marinas: effects of pollutants and implications for invasive species.Crossref | GoogleScholarGoogle Scholar | 30041398PubMed |

Kesteven, H. L. (1909). ‘Studies on Tunicata.’ (Physiological Laboratory of the University of Sydney.)

Kott, P. (1952). Ascidians of Australia. 1. Stolidobranchiata and Phlebobranchiata. Australian Journal of Marine and Freshwater Research 3, 205–333.
Ascidians of Australia. 1. Stolidobranchiata and Phlebobranchiata.Crossref | GoogleScholarGoogle Scholar |

Kott, P. (1985). The Australian Ascidiacea. Part I. Phlebobranchia and Stolidobranchia. Memoirs of the Queensland Museum 23, 1–440.

Kott, P. (2006). Observations on non‐didemnid ascidians from Australian waters (1). Journal of Natural History 40, 169–234.
Observations on non‐didemnid ascidians from Australian waters (1).Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Lambert, G. (2004). The south temperate and Antarctic ascidian Corella eumyota reported in two harbours in north-western France. Journal of the Marine Biological Association of the United Kingdom 84, 239.
The south temperate and Antarctic ascidian Corella eumyota reported in two harbours in north-western France.Crossref | GoogleScholarGoogle Scholar |

Lambert, C. (2005). Ecology and natural history of the protochordates. Canadian Journal of Zoology 83, 34–50.
Ecology and natural history of the protochordates.Crossref | GoogleScholarGoogle Scholar |

Lambert, G. (2009). Adventures of a sea squirt sleuth: unraveling the identity of Didenmum vexillum, a global ascidian invader. Aquatic Invasions 4, 5–28.
Adventures of a sea squirt sleuth: unraveling the identity of Didenmum vexillum, a global ascidian invader.Crossref | GoogleScholarGoogle Scholar |

Lambert, C. C., Lambert, I. M., and Lambert, G. (1995). Brooding strategies in solitary ascidians: Corella species from north and south temperate waters. Canadian Journal of Zoology 73, 1666–1671.
Brooding strategies in solitary ascidians: Corella species from north and south temperate waters.Crossref | GoogleScholarGoogle Scholar |

Lambert, G., Shenkar, N., and Swalla, B. J. (2010). First Pacific record of the north Atlantic ascidian Molgula citrina: bioinvasion or circumpolar distribution? Aquatic Invasions 5, 369–378.
First Pacific record of the north Atlantic ascidian Molgula citrina: bioinvasion or circumpolar distribution?Crossref | GoogleScholarGoogle Scholar |

Leclerc, J. C., Viard, F., González Sepúlveda, E., Díaz, C., Neira Hinojosa, J., Pérez Araneda, K., Silva, F., and Brante, A. (2018). Non-indigenous species contribute equally to biofouling communities in international vs local ports in the Biobío region, Chile. Biofouling 34, 784–799.
Non-indigenous species contribute equally to biofouling communities in international vs local ports in the Biobío region, Chile.Crossref | GoogleScholarGoogle Scholar | 30354802PubMed |

López-Legentil, S., Legentil, M. L., Erwin, P. M., and Turon, X. (2015). Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians. Biological Invasions 17, 1623–1638.
Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians.Crossref | GoogleScholarGoogle Scholar | 26190935PubMed |

Manríquez, P. H., Fica, E., Ortiz, V., and Castilla, J. C. (2014). Bio-incrustantes marinos en el canal de Chacao, Chile: un estudio sobre potenciales interacciones con estructuras manufacturadas por el hombre. Revista de Biología Marina y Oceanografía 49, 243–265.
Bio-incrustantes marinos en el canal de Chacao, Chile: un estudio sobre potenciales interacciones con estructuras manufacturadas por el hombre.Crossref | GoogleScholarGoogle Scholar |

Mastrototaro, F., Montesanto, F., Salonna, M., Viard, F., Chimienti, G., Trainito, E., and Gissi, C. (2020). An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society 190, 1193–1216.
An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia.Crossref | GoogleScholarGoogle Scholar |

Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.
DNA barcoding: error rates based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar | 16336051PubMed |

Michaelsen, W. (1898). Vorliiufige Mitteilung uiber einige Tunicaten aus dem magalhaenischen Gebiet, sowie von Sud-Georgien. Zoologischer Anzeiger 21, 363–371.

Michaelsen, W. (1922). Ascidiae Ptychobranchiae und Diktyobranchiae von Neusealand und den Chatham Inseln. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn 73, 359–498.

Millar, R. H. (1962). Some ascidians from the Caribbean. Studies on the Fauna of Curaçao and other Caribbean Islands 13, 61–77.

Millar, R. H. (1982). The marine fauna of New Zealand: Ascidiacea. New Zealand Oceanographic Institute Memoir 85, 1–117.

Monniot, F. (2013). The genus Corella (Ascidiacea, Phlebobranchia, Corellidae) in the Southern Hemisphere with description of a new species. Zootaxa 3702, 135–149.
The genus Corella (Ascidiacea, Phlebobranchia, Corellidae) in the Southern Hemisphere with description of a new species.Crossref | GoogleScholarGoogle Scholar | 26146713PubMed |

Monniot, C., and Monniot, F. (1983). Ascidies antarctiques et subantarctiques: morphologie et biogeographie. Mémoires du Muséum national d’histoire naturelle Série Zoologie A 215, 1–135.

Monniot, C., Monniot, F., Griffiths, C. L., and Schleyer, M. (2001). South African ascidians. Annals of the South African Museum 108, 1–141.

Nall, C. R., Guerin, A. J., and Cook, E. J. (2015). Rapid assessment of marine non-native species in northern Scotland and a synthesis of existing Scottish records. Aquatic Invasions 10, 107–121.
Rapid assessment of marine non-native species in northern Scotland and a synthesis of existing Scottish records.Crossref | GoogleScholarGoogle Scholar |

Nishikawa, T., Oohara, I., Saitoh, K., Shigenobu, Y., Hasegawa, N., Kanamori, M., Baba, K., Turon, X., and Bishop, J. D. D. (2014). Molecular and morphological discrimination between an invasive ascidian, Ascidiella aspersa, and its congener A. scabra (Urochordata: Ascidiacea). Zoological Science 31, 180–185.
Molecular and morphological discrimination between an invasive ascidian, Ascidiella aspersa, and its congener A. scabra (Urochordata: Ascidiacea).Crossref | GoogleScholarGoogle Scholar | 24601780PubMed |

Nydam, M. L., and Harrison, R. G. (2007). Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Marine Biology 151, 1839–1847.
Genealogical relationships within and among shallow-water Ciona species (Ascidiacea).Crossref | GoogleScholarGoogle Scholar |

Oricchio, F. T., Marques, A. C., Hajdu, E., Pitombo, F. B., Azevedo, F., Passos, F. D., Vieira, L. M., Stampar, S., Rocha, R. M., and Dias, G. M. (2019). Exotic species dominate marinas between the two most populated regions in the southwestern Atlantic Ocean. Marine Pollution Bulletin 146, 884–892.
Exotic species dominate marinas between the two most populated regions in the southwestern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 31426232PubMed |

Page, M., and Kelly, M. (2016). ‘Awesome Ascidians, a Guide to the Sea Squirts of New Zealand.’ (NIWA by TC Media Ltd.)

Pérez-Portela, R., Arranz, V., Rius, M., and Turon, X. (2013). Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports 3, 1–10.

Peters, K., Sink, K., and Robinson, T. B. (2017). Raising the flag on marine alien fouling species. Management of Biological Invasions: International Journal of Applied Research on Biological Invasions 8, 1–11.
Raising the flag on marine alien fouling species.Crossref | GoogleScholarGoogle Scholar |

Pinochet, J., Leclerc, J. C., Brante, A., Daguin-Thiébaut, C., Díaz, C., Tellier, F., and Viard, F. (2017). Presence of the tunicate Asterocarpa humilis on ship hulls and aquaculture facilities in the coast of the Biobío Region, south central Chile. PeerJ 5, e3672.
Presence of the tunicate Asterocarpa humilis on ship hulls and aquaculture facilities in the coast of the Biobío Region, south central Chile.Crossref | GoogleScholarGoogle Scholar | 28828267PubMed |

Rius, M., and Teske, P. R. (2011). A revision of the Pyura stolonifera species complex (Tunicata, Ascidiacea), with a description of a new species from Australia. Zootaxa 2754, 27–40.
A revision of the Pyura stolonifera species complex (Tunicata, Ascidiacea), with a description of a new species from Australia.Crossref | GoogleScholarGoogle Scholar |

Rius, M., and Teske, P. R. (2013). Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species. Zoological Journal of the Linnean Society 168, 597–611.
Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species.Crossref | GoogleScholarGoogle Scholar |

Rius, M., Turon, X., Bernardi, G., Volckaert, F. A., and Viard, F. (2015). Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biological Invasions 17, 869–885.
Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes.Crossref | GoogleScholarGoogle Scholar |

Rocha, R. M., Salonna, M., Griggio, F., Ekins, M., Lambert, G., Mastrototaro, F., Fidler, A., and Gissi, C. (2019). The power of combined molecular and morphological analyses for the genus Botrylloides: identification of a potentially global invasive ascidian and description of a new species. Systematics and Biodiversity 17, 509–526.
The power of combined molecular and morphological analyses for the genus Botrylloides: identification of a potentially global invasive ascidian and description of a new species.Crossref | GoogleScholarGoogle Scholar |

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., and Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34, 3299–3302.
DnaSP 6: DNA sequence polymorphism analysis of large data sets.Crossref | GoogleScholarGoogle Scholar | 29029172PubMed |

Ruiz, G. M., and Carlton, J. T. (2003). Invasion vectors: a conceptual framework for management. In ‘Invasive Species: Vectors and Management Strategies’. pp. 459–504. (Island Press: Washington, DC, USA.)

Ruiz, G. M., Carlton, J. T., Grosholz, E. D., and Hines, A. H. (1997). Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. American Zoologist 37, 621–632.
Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences.Crossref | GoogleScholarGoogle Scholar |

Ruiz, M. B., Taverna, A., Servetto, N., Sahade, R., and Held, C. (2020). Hidden diversity in Antarctica: molecular and morphological evidence of two different species within one of the most conspicuous ascidian species. Ecology and Evolution 10, 8127–8143.
Hidden diversity in Antarctica: molecular and morphological evidence of two different species within one of the most conspicuous ascidian species.Crossref | GoogleScholarGoogle Scholar | 32788966PubMed |

Schwindt, E., Gappa, J. L., Raffo, M. P., Tatián, M., Bortolus, A., Orensanz, J. M., Alonso, G., Diez, M. E., Doto, A., Genazano, G., Lagger, C., Lovrich, G., Piriz, M. L., Mendez, M. M., Savoya, V., and Sueiro, M. C. (2014). Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs. Marine Environmental Research 99, 60–68.
Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs.Crossref | GoogleScholarGoogle Scholar | 24999859PubMed |

Schwindt, E., Carlton, J. T., Orensanz, J. M., Scarabino, F., and Bortolus, A. (2020). Past and future of the marine bioinvasions along the Southwestern Atlantic. Aquatic Invasions 15, 11–29.
Past and future of the marine bioinvasions along the Southwestern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Sluiter, C. P. (1898). Tunicaten von Süd-Afrika. Beiträge zur Kenntniss der Fauna von Südafrika (2). Zoologische Jahrbucher 11, 1–64.
Tunicaten von Süd-Afrika. Beiträge zur Kenntniss der Fauna von Südafrika (2).Crossref | GoogleScholarGoogle Scholar |

Sluiter, C. P. (1900). Tunicaten aus dem Stillen Ozean. Ergebnisse einer Reise nach dem Pacific (Schauinsland 1896/1897). Zoologische Jahrbucher. Abtheilung fur Systematik, Geographie und Biologie der Thiere 13, 1–35.

Stefaniak, L., Lambert, G., Gittenberger, A., Zhang, H., Lin, S., and Whitlatch, R. B. (2009). Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002. Aquatic Invasions 4, 29–44.
Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002.Crossref | GoogleScholarGoogle Scholar |

Stolfi, A., and Brown, F. (2015). Tunicata. In ‘Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia’. (Ed. A. Wanninger.) pp. 135–204. (Springer-Verlag: Vienna, Austria.) 10.1007/978-3-7091-1856-6_4

Tarjuelo, I., and Turon, X. (2004). Resource allocation in ascidians: reproductive investment vs. other life-history traits. Invertebrate Biology 123, 168–180.
Resource allocation in ascidians: reproductive investment vs. other life-history traits.Crossref | GoogleScholarGoogle Scholar |

Tatián, M., Schwindt, E., Lagger, C., and Varela, M. M. (2010). Colonization of Patagonian harbours (SW Atlantic) by an invasive sea squirt. Spixiana 33, 111–117.

Traustedt, M. P. A. (1882). Vestindiske Ascidiae Simplices, Forste Afdeling. Phallusiadae. Videnskabelige Meddelelser fra den naturhistoriske Forening i Kjøbenhavn 1881, 257–288.

Turon, X., Cañete, J. I., Sellanes, J., Rocha, R. M., and López-Legentil, S. (2016a). Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile. Management of Biological Invasions: International Journal of Applied Research on Biological Invasions 7, 77–86.
Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile.Crossref | GoogleScholarGoogle Scholar |

Turon, X., Cañete, J. I., Sellanes, J., Rocha, R. M., and Lopez-Legentil, S. (2016b). Ascidian fauna (Tunicata, Ascidiacea) of subantarctic and temperate regions of Chile. Zootaxa 4093, 151–180.
Ascidian fauna (Tunicata, Ascidiacea) of subantarctic and temperate regions of Chile.Crossref | GoogleScholarGoogle Scholar | 27394488PubMed |

Turon, X., Casso, M., Pascual, M., and Viard, F. (2020). Looks can be deceiving: Didemnum pseudovexillum sp. nov. (Ascidiacea) in European harbours. Marine Biodiversity 50, 48.
Looks can be deceiving: Didemnum pseudovexillum sp. nov. (Ascidiacea) in European harbours.Crossref | GoogleScholarGoogle Scholar |

Ulman, A., Ferrario, J., Occhpinti-Ambrogi, A., Arvanitidis, C., Bandi, A., Bertolino, M., Bogi, C., Chatzigeorgiou, G., Çiçek, B. A., Deidun, A., Ramos-Esplá, A., Koçak, C., Lorenti, M., Martinez-Laiz, G., Merlo, G., Princisgh, E., Scribano, G., and Marchini, A. (2017). A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 5, e3954.
A massive update of non-indigenous species records in Mediterranean marinas.Crossref | GoogleScholarGoogle Scholar | 29155900PubMed |

Van Name, W. G. (1945). The North and South American Ascidians. Bulletin of the American Museum of Natural History 84, 1–476.

Varela, M. M. (2007). Contribución al conocimiento de las ascidias coloniales (Chordata: Tunicata) de la Antártida Occidental y Región Magallánica. Ph.D. Thesis, Universidad de Alicante, Spain.

Viard, F., Roby, C., Turon, X., Bouchemousse, S., and Bishop, J. (2019). Cryptic diversity and database errors challenge non-indigenous species surveys: an illustration with Botrylloides spp. in the English Channel and Mediterranean Sea. Frontiers in Marine Science 6, 615.
Cryptic diversity and database errors challenge non-indigenous species surveys: an illustration with Botrylloides spp. in the English Channel and Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Wonham, M. J., and Carlton, J. T. (2005). Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system. Biological Invasions 7, 369–392.
Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system.Crossref | GoogleScholarGoogle Scholar |

Zabin, C. J., Ashton, G. V., Brown, C. W., Davidson, I. C., Sytsma, M. D., and Ruiz, G. M. (2014). Small boats provide connectivity for nonindigenous marine species between a highly invaded international port and nearby coastal harbors. Management of Biological Invasions: International Journal of Applied Research on Biological Invasions 5, 97.
Small boats provide connectivity for nonindigenous marine species between a highly invaded international port and nearby coastal harbors.Crossref | GoogleScholarGoogle Scholar |

Zhan, A., Briski, E., Bock, D. G., Ghabooli, S., and MacIsaac, H. J. (2015). Ascidians as models for studying invasion success. Marine Biology 162, 2449–2470.
Ascidians as models for studying invasion success.Crossref | GoogleScholarGoogle Scholar |