Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Molecular phylogeny of the orb-weaving spider genus Leucauge and the intergeneric relationships of Leucauginae (Araneae, Tetragnathidae)

Jesús A. Ballesteros https://orcid.org/0000-0003-2315-2368 A B C and Gustavo Hormiga https://orcid.org/0000-0002-0046-1822 A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.Email: hormiga@gwu.edu

B Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI 53706, USA.

C Corresponding author. Email: jeballes@kean.edu

Invertebrate Systematics 35(8) 922-939 https://doi.org/10.1071/IS21029
Submitted: 16 April 2021  Accepted: 8 June 2021   Published: 5 November 2021

Abstract

The tetragnathid genus Leucauge includes some of the most common orb-weaving spiders in the tropics. Although some species in this genus have attained relevance as model systems for several aspects of spider biology, our understanding of the generic diversity and evolutionary relationships among the species is poor. In this study we present the first attempt to determine the phylogenetic structure within Leucauge and the relationship of this genus with other genera of Leucauginae. This is based on DNA sequences from the five loci commonly used and Histone H4, used for the first time in spider phylogenetics. We also assess the informativeness of the standard markers and test for base composition biases in the dataset. Our results suggest that Leucauge is not monophyletic since species of the genera Opas, Opadometa, Mecynometa and Alcimosphenus are included within the current circumscription of the genus. Based on a phylogenetic re-circumscription of the genus to fulfil the requirement for monophyly of taxa, Leucauge White, 1841 is deemed to be a senior synonym of the genera Opas Pickard-Cambridge, 1896 revalidated synonymy, Mecynometa Simon, 1894 revalidated synonymy, Opadometa Archer, 1951 new synonymy and Alcimosphenus Simon, 1895 new synonymy. We identify groups of taxa critical for resolving relationships within Leucauginae and describe the limitations of the standard loci for accomplishing these resolutions.


References

Agnarsson, I., Coddington, J. A., and Kuntner, M. (2013). Systematics: progress in the study of spider diversity and evolution. In ‘Spider Research in the 21st Century: Trends & Perspectives’. (Ed. D. Penny.) pp. 58–109. (Siri Scientific Press.)

Aisenberg, A. (2009). Male performance and body size affect female re-mating occurrence in the orb-web spider Leucauge mariana (Araneae, Tetragnathidae). Ethology 115, 1127–1136.
Male performance and body size affect female re-mating occurrence in the orb-web spider Leucauge mariana (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Aisenberg, A., and Barrantes, G. (2011). Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider Leucauge argyra (Tetragnathidae). Naturwissenschaften 98, 605–613.
Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider Leucauge argyra (Tetragnathidae).Crossref | GoogleScholarGoogle Scholar | 21607653PubMed |

Aisenberg, A., Barrantes, G., and Eberhard, W. G. (2015). Hairy kisses: tactile cheliceral courtship affects female mating decisions in Leucauge mariana (Araneae, Tetragnathidae). Behavioral Ecology and Sociobiology 69, 313–323.
Hairy kisses: tactile cheliceral courtship affects female mating decisions in Leucauge mariana (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Álvarez‐Padilla, F. (2007). Systematics of the spider genus Metabus O. P. Cambridge, 1899 (Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments on the phylogeny of Tetragnathidae. Zoological Journal of the Linnean Society 151, 285–335.
Systematics of the spider genus Metabus O. P. Cambridge, 1899 (Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments on the phylogeny of Tetragnathidae.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., and Hormiga, G. (2011). Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea). Zoological Journal of the Linnean Society 162, 713–879.
Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea).Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., Dimitrov, D., Giribet, G., and Hormiga, G. (2009). Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25, 109–146.
Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., Kallal, R. J., and Hormiga, G. (2020). Taxonomy and Phylogenetics of Nanometinae and other Australasian orb-weaving spiders (Araneae: Tetragnathidae). Bulletin of the American Museum of Natural History 2020, 1–108.
Taxonomy and Phylogenetics of Nanometinae and other Australasian orb-weaving spiders (Araneae: Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Archer, A. F. (1951). Studies in the orbweaving spiders (Argiopidae). 1. American Museum Novitates 1487, 1–52.

Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Molecular Phylogenetics and Evolution 42, 394–409.
Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 16971146PubMed |

Ballesteros, J. A., and Hormiga, G. (2016). A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology. Molecular Biology and Evolution 33, 2117–2134.
A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology.Crossref | GoogleScholarGoogle Scholar | 27189539PubMed |

Ballesteros, J. A., and Hormiga, G. (2018). Species delimitation of the North American orchard-spider Leucauge venusta (Walckenaer, 1841) (Araneae, Tetragnathidae). Molecular Phylogenetics and Evolution 121, 183–197.
Species delimitation of the North American orchard-spider Leucauge venusta (Walckenaer, 1841) (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar | 29337274PubMed |

Banks, N. (1909). Arachnida of Cuba. Estación Central Agronómica de Cuba, Second Report II, 150–174.

Barrantes, G., Zúñiga-Madrigal, J., and Solano-Brenes, D. (2020). Hub thread removal behaviour in the orb weaver Leucauge mariana (Araneae: Tetragnathidae). Arachnology 18, 517–520.
Hub thread removal behaviour in the orb weaver Leucauge mariana (Araneae: Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Benavides, L. R., Giribet, G., and Hormiga, G. (2017). Molecular phylogenetic analysis of ‘pirate spiders’ (Araneae, Mimetidae) with the description of a new African genus and the first report of maternal care in the family. Cladistics 33, 375–405.
Molecular phylogenetic analysis of ‘pirate spiders’ (Araneae, Mimetidae) with the description of a new African genus and the first report of maternal care in the family.Crossref | GoogleScholarGoogle Scholar | 34715733PubMed |

Bidegaray-Batista, L., and Arnedo, M. A. (2011). Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology 11, 317.
Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders.Crossref | GoogleScholarGoogle Scholar | 22039781PubMed |

Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America 106, 5229–5234.
Reconstructing web evolution and spider diversification in the molecular era.Crossref | GoogleScholarGoogle Scholar | 19289848PubMed |

Bonfield, J. K., Smith, K. F., and Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research 23, 4992–4999.
A new DNA sequence assembly program.Crossref | GoogleScholarGoogle Scholar | 8559656PubMed |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Briceño, R. D., and Eberhard, W. E. (2011). The hub as a launching platform: rapid movements of the spider Leucauge mariana (Araneae: Tetragnathidae) as it turns to attack prey. The Journal of Arachnology 39, 102–112.
The hub as a launching platform: rapid movements of the spider Leucauge mariana (Araneae: Tetragnathidae) as it turns to attack prey.Crossref | GoogleScholarGoogle Scholar |

Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar |

Buckles, V. P. (1999). Can the pattern of the Leucauge venusto [sic] webs be used to indicate environmental contamination? Bulletin of Environmental Contamination and Toxicology 62, 563–569.
Can the pattern of the Leucauge venusto [sic] webs be used to indicate environmental contamination?Crossref | GoogleScholarGoogle Scholar | 10227835PubMed |

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
BLAST+: architecture and applications.Crossref | GoogleScholarGoogle Scholar | 20003500PubMed |

Chickering, A. M. (1963). The male of Mecynometa globosa (O. P.-Cambridge) (Araneae, Argiopidae). Psyche 70, 180–183.
The male of Mecynometa globosa (O. P.-Cambridge) (Araneae, Argiopidae).Crossref | GoogleScholarGoogle Scholar |

Coddington, J. A. (1990). Ontogeny and homology in the male palpus of orb weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology 496, 1–52.
Ontogeny and homology in the male palpus of orb weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea).Crossref | GoogleScholarGoogle Scholar |

di Carporiacco, L. (1955). Estudios sobre los aracnidos de Venezuela 2a parte: Araneae. Acta Biologica Venezuelica 1, 265–448.

Dimitrov, D., and Hormiga, G. (2009). Revision and cladistic analysis of the orbweaving spider genus Cyrtognatha Keyserling, 1881 (Araneae, Tetragnathidae). Bulletin of the American Museum of Natural History 317, 1–140.
Revision and cladistic analysis of the orbweaving spider genus Cyrtognatha Keyserling, 1881 (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., and Hormiga, G. (2010). Mr Darwin’s mysterious spider: on the type species of the genus Leucauge White 1841 (Tetragnathidae, Araneae). Zootaxa 2396, 19–36.
Mr Darwin’s mysterious spider: on the type species of the genus Leucauge White 1841 (Tetragnathidae, Araneae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., and Hormiga, G. (2011). An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae). Zoological Journal of the Linnean Society 161, 735–768.
An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., Álvarez-Padilla, F., and Hormiga, G. (2010). On the phylogenetic placement of the spider genus Atimiosa Simon, 1895, and the circumscription of Dolichognatha O.P.-Cambridge, 1869 (Tetragnathidae, Araneae). American Museum Novitates 3683, 1–19.
On the phylogenetic placement of the spider genus Atimiosa Simon, 1895, and the circumscription of Dolichognatha O.P.-Cambridge, 1869 (Tetragnathidae, Araneae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., and Hormiga, G. (2012). Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society of London – B. Biological Sciences 279, 1341–1350.
Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling.Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., Griswold, C. E., Scharff, N., and Hormiga, G. (2017). Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics 33, 221–250.
Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea).Crossref | GoogleScholarGoogle Scholar | 34715728PubMed |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Dunlop, J. A., Penney, D., and Jekel, D. (2017). A summary list of fossil spiders and their relatives, version 18.0. In ‘World Spider Catalog’. (Natural History Museum Bern.)

Eberhard, W. G. (1988a). Memory of distances and directions moved as cues during temporary spiral construction in the spider Leucauge mariana (Araneae: Araneidae). Journal of Insect Behavior 1, 51–66.
Memory of distances and directions moved as cues during temporary spiral construction in the spider Leucauge mariana (Araneae: Araneidae).Crossref | GoogleScholarGoogle Scholar |

Eberhard, W. G. (1988b). Behavioral flexibility in orb web construction: effects of supplies in different silk glands and spider size and weight. The Journal of Arachnology 16, 295–302.

Eberhard, W. G. (1990). Early stages of orb construction by Philoponella vicina, Leucauge mariana and Nephila clavipes (Araneae, Uloboridae and Tetragnathidae), and their phylogenetic implications. The Journal of Arachnology 18, 205–234.

Eberhard, W. G. (2001). Under the influence: webs and building behavior of Plesiometa argyra (Araneae, Tetragnathidae) when parasitized by Hymenoepimecis argyraphaga (Hymenoptera, Ichneumonidae). The Journal of Arachnology 29, 354–366.
Under the influence: webs and building behavior of Plesiometa argyra (Araneae, Tetragnathidae) when parasitized by Hymenoepimecis argyraphaga (Hymenoptera, Ichneumonidae).Crossref | GoogleScholarGoogle Scholar |

Eberhard, W. G., and Huber, B. A. (1998). Courtship, copulation, and sperm transfer in Leucauge mariana (Araneae, Tetragnathidae) with implications for higher classification. The Journal of Arachnology 26, 342–368.

Fernández, R., Hormiga, G., and Giribet, G. (2014). Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Current Biology 24, 1772–1777.
Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers.Crossref | GoogleScholarGoogle Scholar | 25042584PubMed |

Fernández, R., Kallal, R. J., Dimitrov, D., Ballesteros, J. A., Arnedo, M. A., Giribet, G., and Hormiga, G. (2018). Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology 28, 1489–1497.
Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life.Crossref | GoogleScholarGoogle Scholar | 29706520PubMed |

Foster, P. (2004). Modeling compositional heterogeneity. Systematic Biology 53, 485–495.
Modeling compositional heterogeneity.Crossref | GoogleScholarGoogle Scholar | 15503675PubMed |

Garrison, N. L., Rodriguez, J., Agnarsson, I., Coddington, J. A., Griswold, C. E., Hamilton, C. A., Hedin, M., Kocot, K. M., Ledford, J. M., and Bond, J. E. (2016). Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4, e1719.
Spider phylogenomics: untangling the Spider Tree of Life.Crossref | GoogleScholarGoogle Scholar | 26925338PubMed |

Gonzaga, M. O., Moura, R. R., Pêgo, P. T., Bang, D. L., and Meira, F. A. (2015). Changes to web architecture of Leucauge volupis (Araneae: Tetragnathidae) induced by the parasitoid Hymenoepimecis jordanensis (Hymenoptera: Ichneumonidae). Behaviour 152, 181–193.
Changes to web architecture of Leucauge volupis (Araneae: Tetragnathidae) induced by the parasitoid Hymenoepimecis jordanensis (Hymenoptera: Ichneumonidae).Crossref | GoogleScholarGoogle Scholar |

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 20525638PubMed |

Hamilton, C. A., Lemmon, A. R., Lemmon, E. M., and Bond, J. E. (2016). Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evolutionary Biology 16, 212.
Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life.Crossref | GoogleScholarGoogle Scholar | 27733110PubMed |

Hedin, M. C. (2001). Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae). Molecular Phylogenetics and Evolution 18, 238–251.
Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).Crossref | GoogleScholarGoogle Scholar | 11161759PubMed |

Hedin, M., and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41, 454–471.
Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.Crossref | GoogleScholarGoogle Scholar | 16815045PubMed |

Hennig, W. (1950). ‘Grundzüge einer Theorie der phylogenetischen Systematik.’ (Deutscher Zentralverlag: Berlin.)

Hennig, W. (1966). ‘Phylogenetic Systematics.’ (University of Illinois Press: Urbana, IL, USA.)

Hénaut, Y., García-Ballinas, J. A., and Alauzet, C. (2006). Variations in web construction in Leucauge venusta (Araneae, Tetragnathidae). The Journal of Arachnology 34, 234–240.
Variations in web construction in Leucauge venusta (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Hormiga, G. (2017). The discovery of the orb-weaving spider genus Pinkfloydia (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of Nanometinae Zootaxa 4311, 480–490.
The discovery of the orb-weaving spider genus Pinkfloydia (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of NanometinaeCrossref | GoogleScholarGoogle Scholar |

Hormiga, G., and Griswold, C. E. (2014). Systematics, phylogeny, and evolution of orb-weaving Spiders. Annual Review of Entomology 59, 487–512.
Systematics, phylogeny, and evolution of orb-weaving Spiders.Crossref | GoogleScholarGoogle Scholar | 24160416PubMed |

Hormiga, G., Eberhard, W. G., and Coddington, J. A. (1995). Web-construction behaviour in Australian Phonognatha and the phylogeny of Nephiline and Tetragnathid Spiders (Araneae: Tetragnathidae). Australian Journal of Zoology 43, 313–364.
Web-construction behaviour in Australian Phonognatha and the phylogeny of Nephiline and Tetragnathid Spiders (Araneae: Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

International Commission on Zoological Nomenclature (1999). International Code of Zoological Nomenclature. (International Trust for Zoological Nomenclature, c/o Natural History Museum.) Available at http://www.biodiversitylibrary.org/item/107142.

Ishikawa, S. A., Inagaki, Y., and Hashimoto, T. (2012). RY-coding and non-homogeneous models can ameliorate the maximum-likelihood inferences from nucleotide sequence data with parallel compositional heterogeneity. Evolutionary Bioinformatics Online 8, 357–371.
RY-coding and non-homogeneous models can ameliorate the maximum-likelihood inferences from nucleotide sequence data with parallel compositional heterogeneity.Crossref | GoogleScholarGoogle Scholar | 22798721PubMed |

Kallal, R. J., and Hormiga, G. (2018). An expanded molecular phylogeny of metaine spiders (Araneae, Tetragnathidae) with description of new taxa from Taiwan and the Philippines. Invertebrate Systematics 32, 400–422.
An expanded molecular phylogeny of metaine spiders (Araneae, Tetragnathidae) with description of new taxa from Taiwan and the Philippines.Crossref | GoogleScholarGoogle Scholar |

Kallal, R. J., Fernández, R., Giribet, G., and Hormiga, G. (2018). A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Molecular Phylogenetics and Evolution 126, 129–140.
A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches.Crossref | GoogleScholarGoogle Scholar | 29635025PubMed |

Kallal, R. J., Dimitrov, D., Arnedo, M. A., Giribet, G., and Hormiga, G. (2020). Monophyly, taxon sampling, and the nature of ranks in the classification of orb-weaving spiders (Araneae: Araneoidea). Systematic Biology 69, 401–411.
| 31165170PubMed |

Kallal, R. J., Kulkarni, S. S., Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., and Hormiga, G. (2021). Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. Cladistics 37, 298–316.
Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web.Crossref | GoogleScholarGoogle Scholar | 34478199PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kendall, D. G. (1948). On the generalized ‘birth-and-death’ process. Annals of Mathematical Statistics 19, 1–15.
On the generalized ‘birth-and-death’ process.Crossref | GoogleScholarGoogle Scholar |

Kosakovsky Pond, S. L., Frost, S. D. W., and Muse, S. V. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679.
HyPhy: hypothesis testing using phylogenies.Crossref | GoogleScholarGoogle Scholar |

Kulkarni, S., Wood, H., Lloyd, M., and Hormiga, G. (2020). Spider‐specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae) Molecular Ecology Resources 20, 185–203.
Spider‐specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae)Crossref | GoogleScholarGoogle Scholar | 31599100PubMed |

Kulkarni, S., Kallal, R. J., Wood, H., Dimitrov, D., Giribet, G., and Hormiga, G. (2021). Interrogating genomic-scale data to resolve recalcitrant nodes in the Spider Tree of Life. Molecular Biology and Evolution 38, 891–903.
Interrogating genomic-scale data to resolve recalcitrant nodes in the Spider Tree of Life.Crossref | GoogleScholarGoogle Scholar | 32986823PubMed |

Kuntner, M., Coddington, J. A., and Hormiga, G. (2008). Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics 24, 147–217.
Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Levi, H. W. (1980). The orb-weaver genus Mecynogea, the subfamily Metinae and the genera Pachygnatha, Glenognatha and Azilia of the subfamily Tetragnathinae north of Mexico (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology 149, 1–75.

Levi, H. W. (1986). The neotropical orb-weaver genera Chrysometa and Homalometa (Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology 151, 91–215.

Levi, H. W. (1991). The Neotropical and Mexican species of the orb weaver genera Araneus, Dubiepeira and Aculepeira (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology 152, 167–315.

Levi, H. W. (2005). Identity and placement of species of the orb weaver genus Alcimosphenus (Araneae, Tetragnathidae). Journal of Arachnology 33, 753–757.

Levi, H. W. (2008). On the tetragnathid genera Alcimosphenus, Leucauge, Mecynometa and Opas (Araneae, Tetragnathidae). The Journal of Arachnology 36, 167–170.
On the tetragnathid genera Alcimosphenus, Leucauge, Mecynometa and Opas (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Lockhart, P. J., Steel, M. A., Hendy, M. D., and Penny, D. (1994). Recovering evolutionary trees under a more realistic model of sequence evolution. Molecular Biology and Evolution 11, 605–612.
| 19391266PubMed |

Lopardo, L., Giribet, G., and Hormiga, G. (2011). Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses – a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. Cladistics 27, 278–330.
Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses – a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture.Crossref | GoogleScholarGoogle Scholar |

López-Giráldez, F., and Townsend, J. P. (2011). PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evolutionary Biology 11, 152.
PhyDesign: an online application for profiling phylogenetic informativeness.Crossref | GoogleScholarGoogle Scholar | 21627831PubMed |

Maddison, W. P., Bodner, M. R., and Needham, K. M. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). Zootaxa 1893, 49–64.
Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar |

Magalhaes, I. L., Azevedo, G. H., Michalik, P., and Ramírez, M. J. (2020). The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biological Reviews of the Cambridge Philosophical Society 95, 184–217.
The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic.Crossref | GoogleScholarGoogle Scholar |

Mirarab, S., Nguyen, N., Guo, S., Wang, L-S., Kim, J., and Warnow, T. (2015). PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. Journal of Computational Biology 22, 377386.
PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences.Crossref | GoogleScholarGoogle Scholar |

Moya-Laraño, J., Vinkovic, D., Allard, C. M., and Foellmer, M. W. (2007). Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecology 7, 106–112.
Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism.Crossref | GoogleScholarGoogle Scholar |

Peres, E. A., Sobral-Souza, T., Perez, M. F., and Bonatelli, I. A. S. (2015). Pleistocene niche stability and lineage diversification in the subtropical spider Araneus omnicolor (Araneidae). PLoS One 10, e0121543.
Pleistocene niche stability and lineage diversification in the subtropical spider Araneus omnicolor (Araneidae).Crossref | GoogleScholarGoogle Scholar | 25856149PubMed |

Phillips, M. J., Delsuc, F., and Penny, D. (2004). Genome-scale phylogeny and the detection of systematic biases. Molecular Biology and Evolution 21, 1455–1458.
Genome-scale phylogeny and the detection of systematic biases.Crossref | GoogleScholarGoogle Scholar | 15084674PubMed |

Pickard-Cambridge, F. O. (1903). Arachnida – Araneida and Opiliones. In ‘Biologia Centrali-Americana, Zoology’. Vol. 2, pp. 425–464. (London)

Preston-Mafham, K. G., and Cahill, A. (2000). Female-initiated copulations in two tetragnathid spiders from Indonesia: Leucauge nigrovittata and Tylorida ventralis. Journal of Zoology 252, 415–420.
Female-initiated copulations in two tetragnathid spiders from Indonesia: Leucauge nigrovittata and Tylorida ventralis.Crossref | GoogleScholarGoogle Scholar |

Regier, J. C., Shultz, J. W., Ganley, A. R. D., Hussey, A., Shi, D., Ball, B., Zwick, A., Stajich, J. E., Cummings, M. P., Martin, J. W., and Cunningham, C. W. (2008). Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Systematic Biology 57, 920–938.
Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence.Crossref | GoogleScholarGoogle Scholar | 19085333PubMed |

Rix, M. G., Cooper, S. J. B., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution 109, 302–320.
Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |

Romiguier, J., Ranwez, V., Delsuc, F., Galtier, N., and Douzery, E. J. P. (2013). Less is more in mammalian phylogenomics: at-rich genes minimize tree conflicts and unravel the root of placental mammals. Molecular Biology and Evolution 30, 2134–2144.
Less is more in mammalian phylogenomics: at-rich genes minimize tree conflicts and unravel the root of placental mammals.Crossref | GoogleScholarGoogle Scholar | 23813978PubMed |

Salichos, L., and Rokas, A. (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327–331.
Inferring ancient divergences requires genes with strong phylogenetic signals.Crossref | GoogleScholarGoogle Scholar | 23657258PubMed |

Salomon, M., Sponarski, C., Larocque, A., and Avilés, L. (2010). Social organization of the colonial spider Leucauge sp. in the Neotropics: vertical stratification within colonies. The Journal of Arachnology 38, 446–451.
Social organization of the colonial spider Leucauge sp. in the Neotropics: vertical stratification within colonies.Crossref | GoogleScholarGoogle Scholar |

Segura-Hernández, L., Aisenberg, A., Vargas, E., Hernández-Durán, L., Eberhard, W. G., and Barrantes, G. (2020). Tuning in to the male: evidence contradicting sexually antagonistic coevolution models of sexual selection in Leucauge mariana (Araneae Tetragnathidae). Ethology Ecology and Evolution 32, 175–189.
Tuning in to the male: evidence contradicting sexually antagonistic coevolution models of sexual selection in Leucauge mariana (Araneae Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Selden, P. A., and Penney, D. (2003). Lower Cretaceous spiders (Arthropoda: Arachnida: Araneae) from Spain. Jahrbuch für Geologie und Paläontologie, Monatshefte 2003, 175–192.
Lower Cretaceous spiders (Arthropoda: Arachnida: Araneae) from Spain.Crossref | GoogleScholarGoogle Scholar |

Selden, P. A., Ren, D., and Shih, C. (2015). Mesozoic cribellate spiders (Araneae: Deinopoidea) from China. Journal of Systematic Palaeontology 1, 1–26.

Sharma, P., and Kobayashi, T. (2014). Are ‘universal’ DNA primers really universal? Journal of Applied Genetics 55, 485–496.
Are ‘universal’ DNA primers really universal?Crossref | GoogleScholarGoogle Scholar | 24839163PubMed |

Simmons, M. P., Pickett, K. M., and Miya, M. (2004). How meaningful are Bayesian support values? Molecular Biology and Evolution 21, 188–199.
How meaningful are Bayesian support values?Crossref | GoogleScholarGoogle Scholar | 14595090PubMed |

Staden, R. (1996). The Staden sequence analysis package. Molecular Biotechnology 5, 233–241.
The Staden sequence analysis package.Crossref | GoogleScholarGoogle Scholar | 8837029PubMed |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
| 8336541PubMed |

Tarrío, R., Rodriguez-Trelles, F., and Ayala, F. J. (2001). Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Molecular Biology and Evolution 18, 1464–1473.
Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae.Crossref | GoogleScholarGoogle Scholar | 11470837PubMed |

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. American Mathematical Society: Lectures on Mathematics in the Life Sciences 17, 57–86.

Townsend, J. P. (2007). Profiling phylogenetic informativeness. Systematic Biology 56, 222–231.
Profiling phylogenetic informativeness.Crossref | GoogleScholarGoogle Scholar | 17464879PubMed |

Townsend, J. P., Su, Z., and Tekle, Y. I. (2012). Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Systematic Biology 61, 835–849.
Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny.Crossref | GoogleScholarGoogle Scholar | 22389443PubMed |

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., and Rozen, S. G. (2012). Primer3–new capabilities and interfaces. Nucleic Acids Research 40, e115.
Primer3–new capabilities and interfaces.Crossref | GoogleScholarGoogle Scholar | 22730293PubMed |

Van Den Bussche, R. A., Baker, R. J., Hulsenbeck, J. P., and Hillis, D. M. (1998). Base compositional bias and phylogenetic analyses: a test of the ‘Flying DNA’ hypothesis. Molecular Phylogenetics and Evolution 10, 408–416.
Base compositional bias and phylogenetic analyses: a test of the ‘Flying DNA’ hypothesis.Crossref | GoogleScholarGoogle Scholar | 10051393PubMed |

Vink, C. J., Hedin, M., Bodner, M. R., Maddison, W. P., Hayashi, C. Y., and Garb, J. E. (2008). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution 48, 377–382.
Actin 5C, a promising nuclear gene for spider phylogenetics.Crossref | GoogleScholarGoogle Scholar | 18411063PubMed |

Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida-Silva, L., Álvarez-Padilla, F., Arnedo, M. A., Benavides Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasanf, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva-Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C. J., Wood, H. M., and Zhang, J. (2017). The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33, 574–616.
The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling.Crossref | GoogleScholarGoogle Scholar | 34724759PubMed |

White, A. (1841). Descriptions of new or little known Arachnida. The Annals and Magazine of Natural History 1, 471–477.

Wood, H. M., Griswold, C. E., and Spicer, G. S. (2007). Phylogenetic relationships within an endemic group of Malagasy ‘assassin spiders’ (Araneae, Archaeidae): ancestral character reconstruction, convergent evolution and biogeography. Molecular Phylogenetics and Evolution 45, 612–619.
Phylogenetic relationships within an endemic group of Malagasy ‘assassin spiders’ (Araneae, Archaeidae): ancestral character reconstruction, convergent evolution and biogeography.Crossref | GoogleScholarGoogle Scholar | 17869131PubMed |

Zhu, M. S., Song, D. X., and Zhang, J. X. (2003). ‘Fauna Sinica: Invertebrata Vol. 35: Arachnida: Araneae: Tetragnathidae.’ (Chinese Academy of Science.)