Phylogeny and evolution of male genitalia in Withiidae (Arachnida: Pseudoscorpiones)
Catalina Romero-Ortiz




A
B
C
D
E
F
Abstract
The evolution of animal genitalia has been an intriguing topic of research since Darwin proposed that sexual selection is acting upon these traits. Pseudoscorpions (Arachnida) are an interesting model to test this hypothesis since they exhibit a wide array of sexual traits and sexual strategies, including the development of elaborate spermatophores. In this context, we (1) explored the phylogenetic relationships within Withiidae using somatic, sexual characters, and molecular data; (2) estimated times of diversification of the lineages within the family; and (3) explored rates of change of male genitalia characters. We found strong support for the monophyly of Withidae and for both the Neotropical and the non-Neotropical clades; as for the sister group of Withiidae, there is no conclusive evidence since molecular data suggest Atemnidae, supporting previous molecular studies, but the combined morphological and molecular data pointed to Cheliferidae instead, with high support in both cases. The dating analysis suggests that Withiidae originated in the Cretaceous and its main diversification occurred during the Eocene. We also found that sensory traits such as the position of the trichobothria isb and ist, and not genital traits such as length of the ejaculatory canal, change faster, challenging the prediction of higher change rates in the former. In conclusion, for pseudoscorpions, factors other than sexual selection may contribute to stronger selective pressures over their morphology.
Keywords: ancestral states reconstruction, ejaculatory canal, evolution, molecular dating, morphology, sanger genes, selective pressures, sexual selection.
References
Ahrens J, Harms D, Dunlop JA, Kotthoff U (2019) Pseudoscorpions in Bitterfeld Amber – a survey. Mauritiana 37, 113-147.
| Google Scholar |
Ahtiainen JJ, Alatalo RV, Kortet R, Rantala MJ (2005) A trade-off between sexual signaling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. Journal of Evolutionary Biology 18(4), 985-991.
| Crossref | Google Scholar | PubMed |
Arnqvist G (1997) The evolution of animal genitalia: distinguishing between hypotheses by single species studies. Biological Journal of the Linnean Society 60(3), 365-379.
| Crossref | Google Scholar |
Beier M (1932) Pseudoscorpionidea I. Subord. C. Cheliferinea. Tierreich 58, 1–294 [In German].
| Google Scholar |
Beier M (1944) Über Pseudoscorpioniden aus Ostafrika. Eos 20, 173-212 [In German].
| Google Scholar |
Beier M (1955) Pseudoscorpionidea, gesammelt während der schwedischen Expeditionen nach Ostafrika 1937–38 und 1948. Arkiv för Zoologi 7(2), 527-558 [In German].
| Google Scholar |
Benavides LR, Cosgrove JG, Harvey MS, Giribet G (2019) Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones Tree of Life. Molecular Phylogenetics and Evolution 139, 106509.
| Crossref | Google Scholar | PubMed |
Bouckaert R, Drummond A (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17, 42.
| Crossref | Google Scholar | PubMed |
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15(4), e1006650.
| Crossref | Google Scholar | PubMed |
Buzatto BA, Machado GB (2014) Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones). Behavioural Processes 109, 2-13.
| Crossref | Google Scholar | PubMed |
Cabra-García J, Hormiga G (2020) Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae). Zoological Journal of the Linnean Society 188(4), 976-1151.
| Crossref | Google Scholar |
Chamberlin JC (1931) A synoptic revision of the generic classification of the chelonethid family Cheliferidae Simon (Arachnida). Canadian Entomologist 63(12), 289-294.
| Crossref | Google Scholar |
Cosgrove JG, Agnarsson I, Harvey MS, Binford GJ (2016) Pseudoscorpion diversity and distribution in the West Indies: sequence data confirm single island endemism for some clades, but not others. Journal of Arachnology 44, 257-271.
| Crossref | Google Scholar |
de Andrade R, Gnaspini P (2003) Mating behavior and spermatophore morphology of the cave pseudoscorpion Maxchernes iporangae (Arachnida Pseudoscorpiones Chernetidae). Journal of Insect Behavior 16, 37-48.
| Crossref | Google Scholar |
Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC (2016) Genome-scale rates of evolutionary change in bacteria. Microbial Genomics 2(11), 000094.
| Crossref | Google Scholar | PubMed |
Eberhard WG (2010) Evolution of genitalia: theories, evidence, and new directions. Genetica 138, 5-18.
| Crossref | Google Scholar | PubMed |
Fernández R, Edgecombe GD, Giribet G (2016) Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Systematic Biology 65(5), 871-889.
| Crossref | Google Scholar | PubMed |
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294-299.
| Google Scholar | PubMed |
Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13(1), 76-84.
| Crossref | Google Scholar | PubMed |
Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32(3), 221-238.
| Crossref | Google Scholar | PubMed |
Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5), 774-786.
| Crossref | Google Scholar |
Gonçalves TN, Tizo AFS, Tizo-Pedroso E (2024) Mating behavior and parental care in the Neotropical pseudoscorpion Americhernes bethaniae Mahnert, 1979 (Arachnida: Chernetidae). Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 19, 1-10.
| Crossref | Google Scholar |
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.
| Crossref | Google Scholar | PubMed |
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24(1), 129-131.
| Crossref | Google Scholar | PubMed |
Harms D, Dunlop JA (2017) The fossil history of pseudoscorpions (Arachnida: Pseudoscorpiones). Fossil Record 20, 215-238.
| Crossref | Google Scholar |
Harvey MS (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Systematics 6(6), 1373.
| Crossref | Google Scholar |
Harvey MS (2002) The neglected cousins: what do we know about the smaller arachnid orders? Journal of Arachnology 30, 357-372.
| Crossref | Google Scholar |
Harvey MS (2014) A review and redescription of the cosmopolitan pseudoscorpion Chelifer cancroides (Pseudoscorpiones: Cheliferidae). Journal of Arachnology 42, 86-104.
| Crossref | Google Scholar |
Harvey MS (2015) Revised diagnoses for the pseudoscorpion genera Metawithius and Microwithius, with the description of a new Australian genus, and notes on Withius (Pseudoscorpiones, Withiidae). Journal of Arachnology 43(3), 353-370.
| Crossref | Google Scholar |
Harvey MS, Huey J, Hillyer MJ, McIntyre E, Giribet G (2016) The first troglobitic species of Gymnobisiidae (Pseudoscorpiones: Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position. Invertebrate Systematics 30, 75-85.
| Crossref | Google Scholar |
Heath TA, Huelsenbeck JP, Stadler T (2014) The fossilized birth–death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences of the United States of America 111(29), E2957-E2966.
| Crossref | Google Scholar | PubMed |
Heurtault J (1971) Chambre génitale, armature génitale et caractères sexuels secondaires chez quelques espèces de Pseudoscorpions (Arachnida) du genre Withius. Bulletin du Muséum National d’Histoire Naturelle, Paris 42(2), 1037-1053 [In French].
| Google Scholar |
Heurtault J (1994) Un cas indirect de phorésie: les pseudoscorpions Withiidae des termitières mortes de Macrotermes en Afrique tropicale. Bollettino dell’Accademia Gioenia di Scienze Naturali 26, 189-208 [In French].
| Google Scholar |
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35(2), 518-522.
| Crossref | Google Scholar | PubMed |
Judson ML (2007) A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae). Zootaxa 1627(1), 53-68.
| Crossref | Google Scholar |
Judson ML (2009) Cheliferoid pseudoscorpions (Arachnida, Chelonethi) from the Lower Cretaceous of France. Geodiversitas 31(1), 61-71.
| Crossref | Google Scholar |
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14(6), 587-589.
| Crossref | Google Scholar | PubMed |
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4), 772-780.
| Crossref | Google Scholar | PubMed |
Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14), 3059-3066.
| Crossref | Google Scholar | PubMed |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647-1649.
| Crossref | Google Scholar |
Kew HW (1911) A synopsis of the false scorpions of Britain and Ireland. Proceedings of the Royal Irish Academy (B) 29, 38-64.
| Google Scholar |
Klaczko J, Ingram T, Losos J (2015) Genitals evolve faster than other traits in Anolis lizards. Journal of Zoology 295(1), 44-48.
| Crossref | Google Scholar |
Klausen FE (2005) The male genitalia of the family Atemnidae (Pseudoscorpiones). Journal of Arachnology 33, 641-662.
| Crossref | Google Scholar |
Koch CL, Berendt GC (1854) Die im Bernstein befindlichen Myriapoden, Arachniden und Apteren der Vorwelt. In ‘Die im Bernstein Befindlichen Organischen Reste der Vorwelt Gesammelt in Verbindung mit Mehreren Bearbeitet und Herausgegeben. Vol. 1(2)’. (Eds GC Berendt) pp. 1–124. (Nicolai: Berlin, German Confederation) [In German]
Kolesnikov VB, Turbanov IS, Eskov KY, Propistsova EA, Bashkuev AS (2022) First non-amber Mesozoic pseudoscorpion from Upper Triassic deposits of eastern Europe, with a description of two new fossil subfamilies (Arachnida, Pseudoscorpiones, Feaellidae). Papers in Palaeontology 8(5), e1466.
| Crossref | Google Scholar |
Lanfear R, Calcott B, Ho SY, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6), 1695-1701.
| Crossref | Google Scholar | PubMed |
Lanfear R, Hua X, Warren DL (2016) Estimating the effective sample size of tree topologies from Bayesian phylogenetic analyses. Genome Biology and Evolution 8(8), 2319-2332.
| Crossref | Google Scholar | PubMed |
Lefort V, Longueville JE, Gascuel O (2017) SMS: smart model selection in PhyML. Molecular Biology and Evolution 34(9), 2422-2424.
| Crossref | Google Scholar | PubMed |
Legg G (1974) The genitalia and accessory glands of the pseudoscorpion Cheiridium museorum (Cheiridiidae). Journal of Zoology 173, 323-339.
| Crossref | Google Scholar |
Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50(6), 913-925.
| Crossref | Google Scholar | PubMed |
Li Z, Zhang F, Zhang W, Marathe K, Maddison WP, Zhang J (2025) Phylogeny of euophryine jumping spiders from ultra-conserved elements, with evidence on the intersexual coevolution of genitalia (Araneae: Salticidae: Euophryini). Systematic Entomology 50, 554-567.
| Crossref | Google Scholar |
Liu L, Xi Z, Wu S, Davis CC, Edwards SV (2015) Estimating phylogenetic trees from genome-scale data. Annals of the New York Academy of Sciences 1360(1), 36-53.
| Crossref | Google Scholar | PubMed |
Louca S, Pennell MW (2020) Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502-505.
| Crossref | Google Scholar | PubMed |
McLean CJ, Garwood RJ, Brassey CA (2020) Sexual dimorphism in the size and shape of the raptorial pedipalps of Giant Whip Spiders (Arachnida: Amblypygi). Journal of Zoology 310(1), 45-54.
| Crossref | Google Scholar |
Menge A (1855) Ueber die Scheerenspinnen, Chernetidae. Neueste Schriften der Naturforschenden Gesellschaft 5(2), 1-43 [In German].
| Google Scholar |
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE) 10.1109/GCE.2010.5676129
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5), 1530-1534.
| Crossref | Google Scholar | PubMed |
Morlon H, Hartig F, Robin S (2020) Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxiv 2020, 2020.07.03.185074 [Preprint, published 4 July 2020].
| Crossref | Google Scholar |
Murienne J, Harvey MS, Giribet G (2008) First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49, 170-184.
| Crossref | Google Scholar | PubMed |
Nazareth TM, Machado G (2010) Mating system and exclusive postzygotic paternal care in a Neotropical harvestman (Arachnida: Opiliones). Animal Behaviour 79(3), 547-554.
| Crossref | Google Scholar |
Neumann JS, Desalle R, Narechania A, Schierwater B, Tessler M (2021) Morphological characters can strongly influence early animal relationships inferred from phylogenomic data sets. Systematic Biology 70(2), 360-375.
| Crossref | Google Scholar | PubMed |
Noguerales V, Cordero PJ, Ortego J (2018) Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Molecular Ecology 27(5), 1229-1244.
| Crossref | Google Scholar | PubMed |
Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution 42(2), 211-223.
| Crossref | Google Scholar | PubMed |
O’Reilly JE, Puttick MN, Parry L, Tanner AR, Tarver JE, Fleming J, Pisani D, Donoghue PC (2016) Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters 12(4), 20160081.
| Crossref | Google Scholar | PubMed |
Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London – B. Biological Sciences 255(1342), 37-45.
| Crossref | Google Scholar |
Palen-Pietri R, Ceballos A, Peretti AV (2019) Sexual dimorphism and patterns of sexual behavior in Lustrochernes argentinus (Pseudoscorpiones: Chernetidae). Journal of Arachnology 47, 344-350.
| Crossref | Google Scholar |
Parins-Fukuchi C, Stull GW, Smith SA (2021) Phylogenomic conflict coincides with rapid morphological innovation. Proceedings of the National Academy of Sciences of the United States of America 118(19), e2023058118.
| Crossref | Google Scholar | PubMed |
Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, Harmon LJ (2014) geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30(15), 2216-2218.
| Crossref | Google Scholar |
Peretti AV, Vrech DE, Hebets EA (2021) Solifuge (camel spider) reproductive biology: an untapped taxon for exploring sexual selection. Journal of Arachnology 49(3), 299-316.
| Crossref | Google Scholar |
Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Molecular Biology and Evolution 21(9), 1740-1752.
| Crossref | Google Scholar | PubMed |
Poe S (1998) Sensitivity of phylogeny estimation to taxonomic sampling. Systematic Biology 47(1), 18-31.
| Crossref | Google Scholar | PubMed |
Poinar GO, Jr, Ćurčić BPM, Cokendolpher JC (1998) Arthropod phoresy involving pseudoscorpions in the past and present. Acta Arachnologica 47, 79-96.
| Crossref | Google Scholar |
Proctor HC (1993) Mating biology resolves trichotomy for cheliferoid pseudoscorpions (Pseudoscorpionida, Cheliferoidea). Journal of Arachnology 21, 156-158.
| Google Scholar |
Pyron RA (2017) Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology 66(1), 38-56.
| Crossref | Google Scholar | PubMed |
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901-904.
| Crossref | Google Scholar | PubMed |
Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3(2), 217-223.
| Crossref | Google Scholar |
Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution 22(5), 1337-1344.
| Crossref | Google Scholar | PubMed |
Romero-Ortiz C (2023) Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system. PhD thesis, Universidad Nacional de Colombia, Bogotá, Colombia. Available at https://repositorio.unal.edu.co/handle/unal/85259 [In English with title, abstract and keywords in English and Spanish]
Romero-Ortiz C, Harvey MS (2019) The pseudoscorpion genus Verrucachernes (Pseudoscorpiones: Chernetidae) in the Indian region. Zootaxa 4568(2), 257-271.
| Crossref | Google Scholar |
Romero-Ortiz C, Sarmiento CE (2021) A comparative study of the male genitalia of the Cacodemoniini (Pseudoscorpiones: Withiidae). Journal of Arachnology 49(1), 108-121.
| Crossref | Google Scholar |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539-542.
| Crossref | Google Scholar |
Schawaller W (1981) Pseudoskorpione (Cheliferidae) phoretisch auf Käfern (Platypodidae) in Dominikanischem Bernstein (Stuttgarter Bernsteinsammlung: Arachnida, Pseudoscorpionidea und Coleoptera). Stuttgarter Beiträge zur Naturkunde (B) 71, 1-17 [In German].
| Google Scholar |
Schawaller W, Shear WA, Bonamo PM (1991) The first Paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida). American Museum Novitates 3009, 1-24.
| Google Scholar |
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD (2016) The baculum was gained and lost multiple times during mammalian evolution. Integrative and Comparative Biology 56(4), 644-656.
| Crossref | Google Scholar | PubMed |
Sereno PC (2007) Logical basis for morphological characters in phylogenetics. Cladistics 23(6), 565-587.
| Crossref | Google Scholar | PubMed |
Shen XX, Hittinger CT, Rokas A (2017) Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution 1(5), 126.
| Crossref | Google Scholar | PubMed |
Simmons LW (2014) Sexual selection and genital evolution. Austral Entomology 53, 1-17.
| Crossref | Google Scholar |
Soltan-Alinejad P, Parsaei S, Dianat A, Nikbakhtazadeh M, Azizi K (2021) Morphometric study and sexual dimorphism analyses in an Iranian population of Scorpio maurus (Arachnida: Scorpionidae). Ecology and Evolution 11(22), 15630-15638.
| Crossref | Google Scholar | PubMed |
Stadler T (2013) How can we improve accuracy of macroevolutionary rate estimates? Systematic Biology 62(2), 321-329.
| Crossref | Google Scholar | PubMed |
To TH, Jung M, Lycett S, Gascuel O (2016) Fast dating using least-squares criteria and algorithms. Systematic Biology 65(1), 82-97.
| Crossref | Google Scholar | PubMed |
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1), W232-W235.
| Crossref | Google Scholar | PubMed |
Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2), 171-180.
| Crossref | Google Scholar | PubMed |
Vogt L, Bartolomaeus T, Giribet G (2010) The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics 26(3), 301-325.
| Crossref | Google Scholar | PubMed |
Weygoldt P (1970) Vergleichende Untersuchungen zur Fortpflanzungsbiologie der Pseudoscorpione II. Zeitschrift für die Zoologische Systematik und Evolutionsforschung 8, 241-259 [In German].
| Crossref | Google Scholar |
Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46(1), 1-68.
| Crossref | Google Scholar | PubMed |
Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52(4), 528-538.
| Crossref | Google Scholar | PubMed |
Wiens JJ (2006) Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39(1), 34-42.
| Crossref | Google Scholar | PubMed |
Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology 60(5), 719-731.
| Crossref | Google Scholar | PubMed |
Wright AM, Hillis DM (2014) Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9(10), e109210.
| Crossref | Google Scholar | PubMed |
Xiang QY, Thomas DT, Xiang QP (2011) Resolving and dating the phylogeny of Cornales – effects of taxon sampling, data partitions, and fossil calibrations. Molecular Phylogenetics and Evolution 59(1), 123-138.
| Crossref | Google Scholar | PubMed |