Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Evaluating the use of thermal imaging cameras to monitor the endangered greater bilby at Astrebla Downs National Park

John Augusteyn A D , Anthony Pople B and Maree Rich C
+ Author Affiliations
- Author Affiliations

A Queensland Parks and Wildlife Service and Partnerships, PO Box 3130, Red Hill, Qld 4701, Australia.

B Biosecurity Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Qld 4001, Australia.

C Queensland Parks and Wildlife Service and Partnerships, PO Box 202, Longreach, Qld 4730, Australia.

D Corresponding author. Email: john.augusteyn@des.qld.gov.au

Australian Mammalogy 42(3) 329-340 https://doi.org/10.1071/AM19040
Submitted: 11 June 2019  Accepted: 31 January 2020   Published: 4 March 2020

Abstract

Spotlight surveys are widely used to monitor arid-zone-dwelling species such as the greater bilby (Macrotis lagotis). These surveys require a sufficient sample size to adequately model detection probability. Adequate sample sizes can be difficult to obtain for low-density populations and for species that avoid light and or have poor eyeshine like the bilby. Abundance estimates based on burrow counts can be problematic because of the variable relationship between the number of burrows used and bilby abundance. In 2013, feral predators devastated a Queensland bilby population and a method was required that could locate and monitor the remaining bilbies. We report on a study that compared density estimates derived from spotlighting and thermal cameras. Bilbies were surveyed annually over three years, using spotlights and thermal cameras on different nights but using the same transects to compare the methods. On average, thermal cameras detected twice the number of bilbies per kilometre surveyed than spotlighting. Despite this difference in the number of bilbies detected, density estimates (bilbies km−2) were similar (thermal camera versus spotlight: 0.6 versus 0.2 (2014), 3.4 versus 3.4 (2015) and 4.8 versus 3.3 (2016)). Nevertheless, the larger sample size obtained using thermal cameras gave greater confidence in modelling detection probability.

Additional keywords: line transect, multiple-covariates distance sampling, threatened species


References

Bengtson, J. L., Laake, J. L., Boveng, P. L., Cameron, M. F., Bradley Hanson, M., and Stewart, B. S. (2011). Distribution, density, and abundance of pack-ice seals in the Amundsen and Ross Seas, Antarctica. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 1261–1276.
Distribution, density, and abundance of pack-ice seals in the Amundsen and Ross Seas, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Boonstra, R., Krebs, C. J., Boutin, S., and Eadie, J. M. (1994). Finding mammals using far-infrared thermal imaging. Journal of Mammalogy 75, 1063–1068.
Finding mammals using far-infrared thermal imaging.Crossref | GoogleScholarGoogle Scholar |

Bradley, K., Lees, C., Lundie-Jenkins, G., Copley, P., Paltridge, R., Dziminski, M., Southgate, R., Nally, S., and Kemp, L. (Eds) (2015). 2015 Greater Bilby Conservation Summit and Interim Conservation Plan: an Initiative of the Save the Bilby Fund. IUCN SSC Conservation Breeding Specialist Group, Apple Valley, MN.

Buckland, S. T., Anderson, D. R., Burnham, K. P., and Laake, J. L. (1993). ‘Distance Sampling: Estimating Abundance of Biological Populations.’ (Springer: Netherlands.)

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling: Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford.)

Buckland, S. T., Rexstad, E. A., Marques, T. A., and Oedekoven, C. S. (2015). Modelling detection functions. In ‘Distance Sampling: Methods and Applications. Methods in Statistical Ecology’. pp. 53–103. (Springer: Cham, Switzerland.)

Carpenter, F. M., and Dziminski, M. A. (2017). Breaking down scats: degradation of DNA from greater bilby (Macrotis lagotis) faecal pellets. Australian Mammalogy 39, 197–204.
Breaking down scats: degradation of DNA from greater bilby (Macrotis lagotis) faecal pellets.Crossref | GoogleScholarGoogle Scholar |

Cilulko, J., Janiszewski, P., Bogdaszewski, M., and Szczygielska, E. (2013). Infrared thermal imaging in studies of wild animals. European Journal of Wildlife Research 59, 17–23.
Infrared thermal imaging in studies of wild animals.Crossref | GoogleScholarGoogle Scholar |

Corcoran, E., Denman, S., Hanger, J., Wilson, B., and Hamilton, G. (2019). Automated detection of koalas using low-level aerial surveillance and machine learning. Scientific Reports 9, 3208.
Automated detection of koalas using low-level aerial surveillance and machine learning.Crossref | GoogleScholarGoogle Scholar | 30824795PubMed |

Cramer, V. A., Dziminski, M. A., Southgate, R., Carpenter, F., Ellis, R. J., and van Leeuwen, S. (2017). A conceptual framework for habitat use and research priorities for the greater bilby (Macrotis lagotis) in the north of Western Australia. Australian Mammalogy 39, 137–151.
A conceptual framework for habitat use and research priorities for the greater bilby (Macrotis lagotis) in the north of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Focardi, S., De Marinis, A. M., Rizzotto, M., and Pucci, A. (2001). Comparative evaluation of thermal infrared imaging and spotlighting to survey wildlife. Wildlife Society Bulletin 29, 133–139.

Ganow, K. B., Caire, W., and Matlack, R. S. (2015). Use of thermal imaging to estimate the population sizes of Brazilian free-tailed bat, Tadarida brasiliensis, maternity roosts in Oklahoma. The Southwestern Naturalist 60, 90–96.
Use of thermal imaging to estimate the population sizes of Brazilian free-tailed bat, Tadarida brasiliensis, maternity roosts in Oklahoma.Crossref | GoogleScholarGoogle Scholar |

Gill, R. M. A., Thomas, M. L., and Stocker, D. (1997). The use of portable thermal imaging for estimating deer population density in forest habitats. Journal of Applied Ecology 34, 1273–1286.
The use of portable thermal imaging for estimating deer population density in forest habitats.Crossref | GoogleScholarGoogle Scholar |

Havens, K. J., and Sharp, E. J. (1998). Using thermal imagery in the aerial survey of animals. Wildlife Society Bulletin 26, 17–23.

Hocknull, S., Zhao, J., Feng, Y., and Webb, G. (2007). Response of Quaternary rainforest vertebrates to climate change in Australia. Earth and Planetary Science Letters 264, 317–331.
Response of Quaternary rainforest vertebrates to climate change in Australia.Crossref | GoogleScholarGoogle Scholar |

Hounsome, T. D., Young, R. P., Davison, J., Yarnell, R. W., Trewby, I. D., Garnett, B. T., Delahay, R. J., and Wilson, G. J. (2005). An evaluation of distance sampling to estimate badger (Meles meles) abundance. Journal of Zoology 266, 81–87.
An evaluation of distance sampling to estimate badger (Meles meles) abundance.Crossref | GoogleScholarGoogle Scholar |

Johnson, K. A. (2008). Bilby (Macrotis lagotis). In ‘The Mammals of Australia’. (Eds S. Van Dyck, and R. Strahan.) pp. 49–50. (Reed New Holland: Sydney.)

Lavery, H. J., and Kirkpatrick, T. H. (1997). Field management of the bilby, Macrotis lagotis, in an area of south-western Queensland. Biological Conservation 79, 271–281.
Field management of the bilby, Macrotis lagotis, in an area of south-western Queensland.Crossref | GoogleScholarGoogle Scholar |

Lethbridge, M., Stead, M., and Wells, C. (2019). Estimating kangaroo density by aerial survey: a comparison of thermal cameras with human observers. Wildlife Research 46, 639–648.
Estimating kangaroo density by aerial survey: a comparison of thermal cameras with human observers.Crossref | GoogleScholarGoogle Scholar |

Marques, T. A., Thomas, L., Fancy, S. G., and Buckland, S. T. (2007). Improving estimates of bird density using multiple-covariate distance sampling. The Auk 124, 1229–1243.
Improving estimates of bird density using multiple-covariate distance sampling.Crossref | GoogleScholarGoogle Scholar |

McCafferty, D. J. (2013). Applications of thermal imaging in avian science. The Ibis 155, 4–15.
Applications of thermal imaging in avian science.Crossref | GoogleScholarGoogle Scholar |

McCallum, H. (2000). ‘Population Parameters.’ (Blackwell Science: London.)

McGregor, H. M., and Moseby, K. E. (2014). Improved technique for capturing the greater bilby (Macrotis lagotis) using burrow cage traps. Australian Mammalogy 36, 259–260.
Improved technique for capturing the greater bilby (Macrotis lagotis) using burrow cage traps.Crossref | GoogleScholarGoogle Scholar |

McRae, P. (2004). Aspects of the ecology of the greater bilby, Macrotis lagotis, in Queensland. M.Sc. Thesis. University of Sydney.

Moritz, C., Heideman, A., Geffen, E., and McRae, P. (1997). Genetic population structure of the greater bilby Macrotis lagotis, a marsupial in decline. Molecular Ecology 6, 925–936.
Genetic population structure of the greater bilby Macrotis lagotis, a marsupial in decline.Crossref | GoogleScholarGoogle Scholar | 9348702PubMed |

Moseby, K. E., and O’Donnell, E. (2003). Reintroduction of the greater bilby, Macrotis lagotis (Reid) (Marsupialia: Thylacomyidae), to northern South Australia: survival, ecology and notes on reintroduction protocols. Wildlife Research 30, 15–27.
Reintroduction of the greater bilby, Macrotis lagotis (Reid) (Marsupialia: Thylacomyidae), to northern South Australia: survival, ecology and notes on reintroduction protocols.Crossref | GoogleScholarGoogle Scholar |

Paltridge, R., (2016). What did we learn from the 2016 Ninu Festival? Save the Bilby Fund. Unpublished Report.

Pavey, C. R. (2006). National recovery plan for the greater bilby (Macrotis lagotis). Northern Territory Department of Natural Resources, Environment and the Arts, Darwin.

Pedler, R. D., Brandle, R., Read, J. L., Southgate, R., Bird, P., and Moseby, K. E. (2016). Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. Conservation Biology 30(4), 774–78210.1111/cobi.12684

Ramsey, D. S., Caley, P. A., and Robley, A. (2015). Estimating population density from presence–absence data using a spatially explicit model. Journal of Wildlife Management 79, 491–499.
Estimating population density from presence–absence data using a spatially explicit model.Crossref | GoogleScholarGoogle Scholar |

Rich, M., Nolan, B., Speed, J., and Gentle, M. (2014). Lessons in feral cat control – can adaptive management provide the solution? In ‘16th Australasian Pest Conference, Brisbane, Queensland’. (Ed. M. Gentle.) p. 43. [Abstract.] (Biosecurity Queensland: Brisbane.)

Ruttinger, J. A., Colbert, D. S., Warren, R. J., Conner, L. M., and Chamberlain, M. J. (2014). Using thermal imaging cameras with radiotelemetry to locate roost sites of male wild turkeys. Wildlife Society Bulletin 38, 884–886.
Using thermal imaging cameras with radiotelemetry to locate roost sites of male wild turkeys.Crossref | GoogleScholarGoogle Scholar |

Smith, S., McRae, P., and Hughes, J. (2009). Faecal DNA analysis enables genetic monitoring of the species recovery program for an arid-dwelling marsupial. Australian Journal of Zoology 57, 139–148.
Faecal DNA analysis enables genetic monitoring of the species recovery program for an arid-dwelling marsupial.Crossref | GoogleScholarGoogle Scholar |

Southgate, R. (1990). Distribution and abundance of the greater bilby Macrotis lagotis Reid (Marsupialia: Peramelidae). In ‘Bandicoots and Bilbies’. (Eds J. H. Seebeck, P. R. Brown, R. L. Wallis, and C. M. Kemper.) pp. 293–302. (Surry Beatty: Sydney.)

Southgate, R., and Moseby, K., (2008). Track-based monitoring for the deserts and rangelands of Australia. Report prepared for the Threatened Species Network at WWF Australia, Sydney.

Southgate, R., and Possingham, H. (1995). Modelling the reintroduction of the greater bilby Macrotis lagotis using the metapopulation model analysis of the likelihood of extinction (ALEX). Biological Conservation 73, 151–160.
Modelling the reintroduction of the greater bilby Macrotis lagotis using the metapopulation model analysis of the likelihood of extinction (ALEX).Crossref | GoogleScholarGoogle Scholar |

Southgate, R., Paltridge, R., Masters, P., and Nano, T. (2005). An evaluation of transect, plot and aerial survey techniques to monitor the spatial pattern and status of the bilby (Macrotis lagotis) in the Tanami Desert. Wildlife Research 32, 43–52.
An evaluation of transect, plot and aerial survey techniques to monitor the spatial pattern and status of the bilby (Macrotis lagotis) in the Tanami Desert.Crossref | GoogleScholarGoogle Scholar |

Southgate, R., Dziminski, M. A., Paltridge, R., Schubert, A., and Gaikhorst, G. (2019). Verifying bilby presence and the systematic sampling of wild populations using sign-based protocols – with notes on aerial and ground survey techniques and asserting absence. Australian Mammalogy 41, 27–38.
Verifying bilby presence and the systematic sampling of wild populations using sign-based protocols – with notes on aerial and ground survey techniques and asserting absence.Crossref | GoogleScholarGoogle Scholar |

Swann, D. E., Averill-Murray, R. C., and Schwalbe, C. R. (2002). Distance sampling for Sonoran Desert tortoises. Journal of Wildlife Management 66, 969–975.
Distance sampling for Sonoran Desert tortoises.Crossref | GoogleScholarGoogle Scholar |

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar | 20383262PubMed |

Thompson, S. K. (1992). ‘Sampling.’ (John Wiley and Sons: New York.)