Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Evolutionary relationships in Santalales inferred using target capture with Angiosperms353, focusing on Australasian Santalaceae sensu lato

Benjamin M. Anderson https://orcid.org/0000-0001-9755-4365 A * , Maja Edlund B , Shelley A. James https://orcid.org/0000-0003-1105-1850 A , Brendan J. Lepschi https://orcid.org/0000-0002-3281-2973 C , Daniel L. Nickrent https://orcid.org/0000-0001-8519-0517 D , Amir Sultan https://orcid.org/0000-0003-2116-9502 E , Jennifer A. Tate https://orcid.org/0000-0001-5138-2115 F and Gitte Petersen https://orcid.org/0000-0002-2325-0059 B
+ Author Affiliations
- Author Affiliations

A Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, WA 6983, Australia.

B Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.

C Australian National Herbarium, Centre for Australian National Biodiversity Research, Canberra, ACT 2601, Australia.

D Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY 14853, USA.

E National Herbarium of Pakistan (Stewart Collection), Plant Genetic Resources Institute, Pakistan Agricultural Research Council, National Agricultural Research Centre, Islamabad, Pakistan.

F School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand.


Handling Editor: Daniel Murphy

Australian Systematic Botany 38, SB24026 https://doi.org/10.1071/SB24026
Submitted: 15 August 2024  Accepted: 30 April 2025  Published: 17 June 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The angiosperm order Santalales comprises more than 2500 species, most of which are hemi- or holoparasitic on other plants, and derive water and nutrients via specialised structures that attach to host roots or stems. The parasitic lifestyle has affected the morphology and genomes of these plants, and classification of the order has been difficult, with outstanding questions about membership of and relationships between families in the order. We chose to focus on improving phylogenetic sampling in the broadly circumscribed Santalaceae sens. lat., with emphasis on Australasian members of Amphorogynaceae and Viscaceae as part of the Genomics for Australian Plants Initiative. We used target capture with the Angiosperms353 bait set to generate a dataset of 318 nuclear loci × 195 samples, including publicly available data from other Santalales families. Phylogenetic inferences using maximum likelihood concatenation and a summary coalescent approach were largely congruent and resolved relationships between most families, agreeing with much of the previous work on the order. Some relationships that have been difficult to resolve remained so, such as branching order among some families in Olacaceae sens. lat. and Santalaceae sens. lat. Denser sampling in Amphorogynaceae and Viscaceae provided new insights into species-level relationships in genera such as Leptomeria and Choretrum, and allowed testing of recent phylogenetic work in Korthalsella. Our new phylogenetic hypothesis is consistent with one origin of root hemiparasitism, two origins of holoparasitism and five origins of aerial parasitism in the order. Although Angiosperms353 was successful, some phylogenetic bias in gene recovery suggests that future studies may benefit from more specific baits and deeper sequencing, especially for Viscaceae.

Keywords: Amphorogynaceae, Australia, Choretrum, Genomics for Australian Plants, HybPiper, Korthalsella, Leptomeria, mistletoe, New Zealand, parasitic plant, phylogenomics, Viscaceae.

References

Anderson B (2025) bmichanderson/Santalaceae: Publication. Zendodo 2025, v1.1.0 [Dataset, published 23 May 2025].
| Crossref | Google Scholar |

Baird IRC (2014) A novel observation of putative aerial hemiparasitism in Exocarpus aphyllus (Santalaceae). Queensland Naturalist 52, 48-52.
| Google Scholar |

Baker WJ, Bailey P, Barber V, Barker A, Bellot S, Bishop D, Botigué LR, Brewer G, Carruthers T, Clarkson JJ, Cook J, Cowan RS, Dodsworth S, Epitawalage N, Françoso E, Gallego B, Johnson MG, Kim JT, Leempoel K, Maurin O, Mcginnie C, Pokorny L, Roy S, Stone M, Toledo E, Wickett NJ, Zuntini AR, Eiserhardt WL, Kersey PJ, Leitch IJ, Forest F (2021) A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology 71, 301-319.
| Crossref | Google Scholar | PubMed |

Brewer GE, Clarkson JJ, Maurin O, Zuntini AR, Barber V, Bellot S, Biggs N, Cowan RS, Davies NMJ, Dodsworth S, Edwards SL, Eiserhardt WL, Epitawalage N, Frisby S, Grall A, Kersey PJ, Pokorny L, Leitch IJ, Forest F, Baker WJ (2019) Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms. Frontiers in Plant Science 10, 1102.
| Crossref | Google Scholar | PubMed |

Carpenter EJ, Matasci N, Ayyampalayam S, Wu S, Sun J, Yu J, Jimenez Vieira FR, Bowler C, Dorrell RG, Gitzendanner MA, Li L, Du W, Ullrich K, Wickett NJ, Barkmann TJ, Barker MS, Leebens-Mack JH, Wong GK-S (2019) Access to RNA-sequencing data from 1,173 plant species: the 1000 Plant transcriptomes initiative (1KP). Gigascience 8, giz126.
| Crossref | Google Scholar | PubMed |

Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80, 528-580.
| Crossref | Google Scholar |

Chen X, Fang D, Wu C, Liu B, Liu Y, Sahu SK, Song B, Yang S, Yang T, Wei J, Wang X, Zhang W, Xu Q, Wang H, Yuan L, Liao X, Chen L, Chen Z, Yuan F, Chang Y, Lu L, Yang H, Wang J, Xu X, Liu X, Wicke S, Liu H (2020) Comparative plastome analysis of root- and stem-feeding parasites of Santalales untangle the footprints of feeding mode and lifestyle transitions. Genome Biology and Evolution 12, 3663-3676.
| Crossref | Google Scholar | PubMed |

Coleman E (1934) Notes on Exocarpos. Victorian Naturalist 51, 132-139.
| Google Scholar |

Der JP, Nickrent DL (2008) A molecular phylogeny of Santalaceae (Santalales). Systematic Botany 33, 107-116.
| Crossref | Google Scholar |

Devkota MP, Macklin J, Nickrent DL (2015) The status of the mistletoe genus Dufrenoya Chatin (Amphorogynaceae) with a specific focus on Nepal. Flora 215, 75-83.
| Crossref | Google Scholar |

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11-15.
| Google Scholar |

Edlund M, Anderson BM, Su H-J, Robison T, Caraballo-Ortiz MA, Der JP, Nickrent DL, Petersen G (2024) Plastome evolution in Santalales involves relaxed selection prior to loss of ndh genes and major boundary shifts of the inverted repeat. Annals of Botany 135, 515-530.
| Crossref | Google Scholar | PubMed |

Engler A, Krause K (1935) Loranthaceae. In ‘Die Natürlichen Pflanzenfamilien’, 2nd edn, vol. 16b. (Eds A Engler, K Prantl) pp. 98–203. (Engelmann: Leipzig, German Republic) [In German]

García MA, Mucina L, Nickrent DL (2024) A tough nutlet to crack: resolving the phylogeny of Thesium (Thesiaceae), the largest genus in Santalales. Taxon 73, 190-236.
| Crossref | Google Scholar |

Govaerts R, Alrich P, Andersson L, Andrella GC, Andrews S, et al. (2025) The World Checklist of Vascular Plants (WCVP). (Royal Botanic Gardens: Kew, UK) 10.15468/6h8ucr

Grímsson F, Grimm GW, Zetter R (2017) Evolution of pollen morphology in Loranthaceae. Grana 57, 16-116.
| Crossref | Google Scholar | PubMed |

Harms H (1935) Balanophoraceae. In ‘Die Natürlichen Pflanzenfamilien’, 2nd edn, vol. 16b. (Eds A Engler, K Prantl) pp. 296–339. (Engelmann: Leipzig, German Republic) [In German]

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518-522.
| Crossref | Google Scholar | PubMed |

Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Systematic Biology 52, 131-158.
| Crossref | Google Scholar | PubMed |

Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega NJNJC, Wickett NJ (2016) HybPiper: extracting coding sequence and introns for phylogenetics from high‐throughput sequencing reads using target enrichment. Applications in Plant Sciences 4, 1600016.
| Crossref | Google Scholar | PubMed |

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68, 594-606.
| Crossref | Google Scholar | PubMed |

Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26, 1669-1670.
| Crossref | Google Scholar | PubMed |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Kuijt J (1969) ‘The Biology of Parasitic Flowering Plants.’ (University of California Press: Berkeley, CA, USA)

Kuijt J (2015) Santalales. In ‘The Families and Genera of Vascular Plants. Flowering Plants. Eudicots: Santalales, Balanophorales’. (Ed K Kubitzki) pp. 1–189. (Springer International Publishing: Cham, Switzerland) 10.1007/978-3-319-09296-6.

Lam HJ (1945) Fragmenta papuana (observations of a naturalist in Netherlands New Guinea). Sargentia 5, 1-196.
| Crossref | Google Scholar |

Lanfear R, Hahn MW (2024) The meaning and measure of concordance factors in phylogenomics. Molecular Biology and Evolution 41, msae214.
| Crossref | Google Scholar | PubMed |

Le C, Liu B, Barrett RL, Lu L, Wen J, Chen Z (2018) Phylogeny and a new tribal classification of Opiliaceae (Santalales) based on molecular and morphological evidence. Journal of Systematics and Evolution 56, 56-66.
| Crossref | Google Scholar |

Lepschi BJ (1999) Taxonomic revision of Leptomeria (Santalaceae). Australian Systematic Botany 12, 55-100.
| Crossref | Google Scholar |

Li H-T, Luo Y, Gan L, Ma P-F, Gao L-M, Yang J-B, Cai J, Gitzendanner MA, Fritsch PW, Zhang T, Jin J-J, Zeng C-X, Wang H, Yu W-B, Zhang R, Van Der Bank M, Olmstead RG, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Yi T-S, Li D-Z (2021) Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology 19, 232.
| Crossref | Google Scholar | PubMed |

Liu B, Le CT, Barrett RL, Nickrent DL, Chen Z, Lu L, Vidal-Russell R (2018) Historical biogeography of Loranthaceae (Santalales): diversification agrees with emergence of tropical forests and radiation of songbirds. Molecular Phylogenetics and Evolution 124, 199-212.
| Crossref | Google Scholar | PubMed |

Maclean AE, Hertle AP, Ligas J, Bock R, Balk J, Meyer EH (2018) Absence of complex I is associated with diminished respiratory chain function in European mistletoe. Current Biology 28, 1614-1619.
| Crossref | Google Scholar | PubMed |

Maddison WP (1997) Gene trees in species trees. Systematic Biology 46, 523-536.
| Crossref | Google Scholar |

Mai U, Mirarab S (2018) TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 272.
| Crossref | Google Scholar | PubMed |

Malécot V, Nickrent DL (2008) Molecular phylogenetic relationships of Olacaceae and related Santalales. Systematic Botany 33, 97-106.
| Crossref | Google Scholar |

Maul K, Krug M, Nickrent DL, Müller KF, Quandt D, Wicke S (2019) Morphology, geographic distribution, and host preferences are poor predictors of phylogenetic relatedness in the mistletoe genus Viscum L. Molecular Phylogenetics and Evolution 131, 106-115.
| Crossref | Google Scholar | PubMed |

McLay TGB, Birch JL, Gunn BF, Ning W, Tate JA, Nauheimer L, Joyce EM, Simpson L, Schmidt‐Lebuhn AN, Baker WJ, Forest F, Jackson CJ (2021) New targets acquired: improving locus recovery from the Angiosperms353 probe set. Applications in Plant Sciences 9, e11420.
| Crossref | Google Scholar | PubMed |

Mildbraed J (1935) Octoknemaceae. In ‘Die Natürlichen Pflanzenfamilien’, 2nd edn, vol. 16b. (Eds A Engler, K Prantl) pp. 42–45. (Engelmann: Leipzig, German Republic) [In German]

Minh BQ, Hahn MW, Lanfear R (2020a) New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37, 2727-2733.
| Crossref | Google Scholar | PubMed |

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020b) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530-1534.
| Crossref | Google Scholar | PubMed |

Mo YK, Lanfear R, Hahn MW, Minh BQ (2023) Updated site concordance factors minimize effects of homoplasy and taxon sampling. Bioinformatics 39, btac741.
| Crossref | Google Scholar | PubMed |

Molvray M, Kores PJ, Chase MW (1999) Phylogenetic relationships within Korthalsella (Viscaceae) based on nuclear ITS and plastid trnL‐F sequence data. American Journal of Botany 86, 249-260.
| Crossref | Google Scholar | PubMed |

Nickrent DL (2020) Parasitic angiosperms: How often and how many? Taxon 69, 5-27.
| Crossref | Google Scholar |

Nickrent DL, Duff RJ (1996) Molecular studies of parasitic plants using ribosomal RNA. In ‘Advances in Parasitic Plant Research’. (Eds MT Moreno, JI Cubero, D Berner, D Joel, LJ Musselman, C Parker) pp. 28–52. (Junta de Andalucia, Dirección General de Investigación Agraria Córdoba: Córdoba, Spain)

Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In ‘Molecular Systematics of Plants II: DNA Sequencing’. (Eds DE Soltis, PS Soltis, JJ Doyle) pp. 211–241. (Kluwer: Boston, MA, USA) 10.1007/978-1-4615-5419-6_8

Nickrent DL, García MA, Martín MP, Mathiasen RL (2004) A phylogeny of all species of Arceuthobium (Viscaceae) using nuclear and chloroplast DNA sequences. American Journal of Botany 91, 125-138.
| Crossref | Google Scholar | PubMed |

Nickrent DL, Der JP, Anderson FE (2005) Discovery of the photosynthetic relatives of the ‘Maltese mushroom’ Cynomorium. BMC Evolutionary Biology 5, 38.
| Crossref | Google Scholar | PubMed |

Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59, 538-558.
| Crossref | Google Scholar |

Nickrent DL, Anderson F, Kuijt J (2019) Inflorescence evolution in Santalales: integrating morphological characters and molecular phylogenetics. American Journal of Botany 106, 402-414.
| Crossref | Google Scholar | PubMed |

Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W, Macas J, Leitch IJ, Leitch AR (2020) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants 6, 1325-1329.
| Crossref | Google Scholar | PubMed |

Petersen G, Cuenca A, Møller IM, Seberg O (2015a) Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Scientific Reports 5, 17588.
| Crossref | Google Scholar | PubMed |

Petersen G, Cuenca A, Seberg O (2015b) Plastome evolution in hemiparasitic mistletoes. Genome Biology and Evolution 7, 2520-2532.
| Crossref | Google Scholar | PubMed |

Petersen G, Anderson B, Braun H-P, Meyer EH, Møller IM (2020) Mitochondria in parasitic plants. Mitochondrion 52, 173-182.
| Crossref | Google Scholar | PubMed |

Petersen G, Shyama Prasad Rao R, Anderson B, Zervas A, Seberg O, Rasmusson AG, Møller IM (2022) Genes from oxidative phosphorylation complexes II–V and two dual-function subunits of complex I are transcribed in Viscum album despite absence of the entire mitochondrial holo-complex I. Mitochondrion 62, 1-12.
| Crossref | Google Scholar | PubMed |

Pilger R (1935) Santalaceae. In ‘Die Natürlichen Pflanzenfamilien’. (Eds A Engler, K Prantl) pp. 52–91. (Engelmann: Leipzig, German Republic) [In German]

Pillon Y, Gotty K, Lepschi BJ (2023) A revised generic circumscription of Exocarpos (Santalaceae), including the transfer of Omphacomeria to Exocarpos. Muelleria 42, 9-14.
| Google Scholar |

Ramm T, Roycroft EJ, Müller J (2020) Convergent evolution of tail spines in squamate reptiles driven by microhabitat use. Biology Letters 16, 20190848.
| Crossref | Google Scholar |

Revell LJ (2024) phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505.
| Crossref | Google Scholar | PubMed |

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology 14, 23.
| Crossref | Google Scholar | PubMed |

Sanmartín I, Meseguer AS (2016) Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Frontiers in Genetics 7, 35.
| Crossref | Google Scholar | PubMed |

Sayyari E, Mirarab S (2016) Fast coalescent-based computation of local branch support from quartet frequencies. Molecular Biology and Evolution 33, 1654-1668.
| Crossref | Google Scholar | PubMed |

Sayyari E, Mirarab S (2018) Testing for polytomies in phylogenetic species trees using quartet frequencies. Genes 9, 132.
| Crossref | Google Scholar | PubMed |

Schellenberg G (1932) Über Systembildung und über die Reihe der Santalales. Berichte der Deutschen Botanischen Gesellschaft 50a, 136-145.
| Crossref | Google Scholar |

Schröder L, Hohnjec N, Senkler M, Senkler J, Küster H, Braun H (2022) The gene space of European mistletoe (Viscum album). The Plant Journal 109, 278-294.
| Crossref | Google Scholar | PubMed |

Senkler J, Rugen N, Eubel H, Hegermann J, Braun H-P (2018) Absence of complex I implicates rearrangement of the respiratory chain in European mistletoe. Current Biology 28, 1606-1613.
| Crossref | Google Scholar | PubMed |

Skippington E, Barkman TJ, Rice DW, Palmer JD (2015) Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proceedings of the National Academy of Sciences 112, E3515-E3524.
| Crossref | Google Scholar | PubMed |

Skottsberg C (1935) Myzodendraceae. In ‘Die Natürlichen Pflanzenfamilien’, 2nd edn, vol. 16b. (Eds A Engler, K Prantl) pp. 92–97. (Engelmann: Leipzig, German Republic) [In German]

Sleumer H (1935a) Olacaceae. In ‘Die Natürlichen Pflanzenfamilien’, 2nd edn, vol. 16b. (Eds A Engler, K Prantl) pp. 5–32. (Engelmann: Leipzig, German Republic) [In German]

Sleumer H (1935b) Opiliaceae. In ‘Die Natürlichen Pflanzenfamilien’, 2nd edn, vol. 16b. (Eds A Engler, K Prantl) pp. 33–41. (Engelmann: Leipzig, German Republic) [In German]

Smith SA, O’Meara BC (2012) treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690.
| Crossref | Google Scholar | PubMed |

Su H-J, Hu J-M, Anderson FE, Der JP, Nickrent DL (2015) Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. Taxon 64, 491-506.
| Crossref | Google Scholar |

Su H-J, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu J-M, Palmer JD, dePamphilis CW (2019) Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proceedings of the National Academy of Sciences 116, 934-943.
| Crossref | Google Scholar | PubMed |

Sultan A, Robertson AW, Callmander MW, Phillipson PB, Meyer J, Tate JA (2019) Widespread morphological parallelism in Korthalsella (Santalaceae, tribe Visceae): a molecular phylogenetic perspective. Taxon 68, 1204-1218.
| Crossref | Google Scholar |

Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34, W609-W612.
| Crossref | Google Scholar | PubMed |

The Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85, 531-553.
| Crossref | Google Scholar |

The Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399-436.
| Crossref | Google Scholar |

The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105-121.
| Crossref | Google Scholar |

The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1-20.
| Crossref | Google Scholar |

Vidal-Russell R, Nickrent DL (2008) The first mistletoes: origins of aerial parasitism in Santalales. Molecular Phylogenetics and Evolution 47, 523-537.
| Crossref | Google Scholar | PubMed |

Wicke S, Müller KF, dePamphilis CW, Quandt D, Bellot S, Schneeweiss GM (2016) Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proceedings of the National Academy of Sciences 113, 9045-9050.
| Crossref | Google Scholar | PubMed |

Wilson CA, Calvin CL (2006) An origin of aerial branch parasitism in the mistletoe family, Loranthaceae. American Journal of Botany 93, 787-796.
| Crossref | Google Scholar | PubMed |

Zervas A, Petersen G, Seberg O (2019) Mitochondrial genome evolution in parasitic plants. BMC Evolutionary Biology 19, 87.
| Crossref | Google Scholar | PubMed |

Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153.
| Crossref | Google Scholar | PubMed |

Zonneveld BJM (2010) New record holders for maximum genome size in eudicots and monocots. Journal of Botany 2010, 527357.
| Crossref | Google Scholar |

Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, Françoso E, Gallego-Paramo B, McGinnie C, Negrão R, Roy SR, Simpson L, Toledo Romero E, Barber VMA, Botigué L, Clarkson JJ, Cowan RS, Dodsworth S, Johnson MG, Kim JT, Pokorny L, Wickett NJ, Antar GM, DeBolt L, Gutierrez K, Hendriks KP, Hoewener A, Hu A-Q, Joyce EM, Kikuchi IABS, Larridon I, Larson DA, de Lírio EJ, Liu J-X, Malakasi P, Przelomska NAS, Shah T, Viruel J, Allnutt TR, Ameka GK, Andrew RL, Appelhans MS, Arista M, Ariza MJ, Arroyo J, Arthan W, Bachelier JB, Bailey CD, Barnes HF, Barrett MD, Barrett RL, Bayer RJ, Bayly MJ, Biffin E, Biggs N, Birch JL, Bogarín D, Borosova R, Bowles AMC, Boyce PC, Bramley GLC, Briggs M, Broadhurst L, Brown GK, Bruhl JJ, Bruneau A, Buerki S, Burns E, Byrne M, Cable S, Calladine A, Callmander MW, Cano Á, Cantrill DJ, Cardinal-McTeague WM, Carlsen MM, Carruthers AJA, de Castro Mateo A, Chase MW, Chatrou LW, Cheek M, Chen S, Christenhusz MJM, Christin P-A, Clements MA, Coffey SC, Conran JG, Cornejo X, Couvreur TLP, Cowie ID, Csiba L, Darbyshire I, Davidse G, Davies NMJ, Davis AP, van Dijk K, Downie SR, Duretto MF, Duvall MR, Edwards SL, Eggli U, Erkens RHJ, Escudero M, de la Estrella M, Fabriani F, Fay MF, Ferreira PDL, Ficinski SZ, Fowler RM, Frisby S, Fu L, Fulcher T, Galbany-Casals M, Gardner EM, German DA, Giaretta A, Gibernau M, Gillespie LJ, González CC, Goyder DJ, Graham SW, Grall A, Green L, Gunn BF, Gutiérrez DG, Hackel J, Haevermans T, Haigh A, Hall JC, Hall T, Harrison MJ, Hatt SA, Hidalgo O, Hodkinson TR, Holmes GD, Hopkins HCF, Jackson CJ, James SA, Jobson RW, Kadereit G, Kahandawala IM, Kainulainen K, Kato M, Kellogg EA, King GJ, Klejevskaja B, Klitgaard BB, Klopper RR, Knapp S, Koch MA, Leebens-Mack JH, Lens F, Leon CJ, Léveillé-Bourret É, Lewis GP, Li D-Z, Li L, Liede-Schumann S, Livshultz T, Lorence D, Lu M, Lu-Irving P, Luber J, Lucas EJ, Luján M, Lum M, Macfarlane TD, Magdalena C, Mansano VF, Masters LE, Mayo SJ, McColl K, McDonnell AJ, McDougall AE, McLay TGB, McPherson H, Meneses RI, Merckx VSFT, Michelangeli FA, Mitchell JD, Monro AK, Moore MJ, Mueller TL, Mummenhoff K, Munzinger J, Muriel P, Murphy DJ, Nargar K, Nauheimer L, Nge FJ, Nyffeler R, Orejuela A, Ortiz EM, Palazzesi L, Peixoto AL, Pell SK, Pellicer J, Penneys DS, Perez-Escobar OA, Persson C, Pignal M, Pillon Y, Pirani JR, Plunkett GM, Powell RF, Prance GT, Puglisi C, Qin M, Rabeler RK, Rees PEJ, Renner M, Roalson EH, Rodda M, Rogers ZS, Rokni S, Rutishauser R, De Salas MF, Schaefer H, Schley RJ, Schmidt-Lebuhn A, Shapcott A, Al-Shehbaz I, Shepherd KA, Simmons MP, Simões AO, Simões ARG, Siros M, Smidt EC, Smith JF, Snow N, DE Soltis, Soltis PS, Soreng RJ, Sothers CA, Starr JR, Stevens PF, Straub SCK, Struwe L, Taylor JM, Telford IRH, Thornhill AH, Tooth I, Trias-Blasi A, Udovicic F, Utteridge TMA, Del Valle JC, Verboom GA, Vonow HP, Vorontsova MS, de Vos JM, Al-Wattar N, Waycott M, Welker CAD, White AJ, Wieringa JJ, Williamson LT, Wilson TC, Wong SY, Woods LA, Woods R, Worboys S, Xanthos M, Yang Y, Zhang Y-X, Zhou M-Y, Zmarzty S, Zuloaga FO, Antonelli A, Bellot S, Crayn DM, Grace OM, Kersey PJ, Leitch IJ, Sauquet H, Smith SA, Eiserhardt WL, Forest F, Baker WJ (2024) Phylogenomics and the rise of the angiosperms. Nature 629, 843-850.
| Crossref | Google Scholar | PubMed |