Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

How can blind tiger snakes (Notechis scutatus) forage successfully?

Fabien Aubret A B E , Xavier Bonnet B C , David Pearson D and Richard Shine C
+ Author Affiliations
- Author Affiliations

A School of Animal Biology, M092, University of Western Australia, Perth, WA 6009, Australia.

B Centre d’Etudes Biologiques de Chizé, CNRS, Villiers en Bois, France.

C Biological Sciences, University of Sydney, NSW 2006, Australia.

D Conservation and Land Management, Science Division, Woodvale Research Centre, Wanneroo, WA 6946, Australia.

E Corresponding author. Email: fab@congo.zzn.com

Australian Journal of Zoology 53(5) 283-288 https://doi.org/10.1071/ZO05035
Submitted: 22 June 2005  Accepted: 13 September 2005   Published: 11 November 2005

Abstract

On a small island off south-western Australia, tiger snakes (Notechis scutatus, Elapidae) continue to survive, feed, grow and reproduce successfully after being blinded by seagulls defending their chicks. We propose two alternative hypotheses to explain this surprising result: either vision is of trivial importance in tiger snake foraging, or the blinded snakes survive on a diet of abundant immobile prey that cannot escape their approach. Laboratory studies in which we blindfolded snakes falsified the first hypothesis: snakes that were unable to see had great difficulty in capturing mobile prey. Field data support the second hypothesis: blind snakes feed almost entirely on seagull chicks, whereas normal-sighted animals also took fast-moving prey (lizards and mice). Thus, the ability of tiger snakes on Carnac Island to survive without vision is attributable to the availability of abundant helpless prey (seagull chicks) in this insular ecosystem.


Acknowledgments

We thank the Poitou-charentes region (France), the Conseil Général des Deux-Sèvres, the University of Western Australia, and the Australian Research Council for funding. We are also very grateful to Don Bradshaw and Wally Gibb. Zoé Lechat helped with live mice provisioning. Rex Cambag provided useful comments on early versions of the manuscript. The manuscript also benefited from numerous comments from several anonymous referees.


References

Amo, L. , Lopez, P. , and Marti, J. (2004). Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Animal Behaviour 67, 647–653.
Crossref | GoogleScholarGoogle Scholar | Bakker R. T. (1983). The deer flees, the wolf pursues: incongruencies in predator–prey coevolution. In ‘Coevolution’. (Eds D. J. Futuyma and M. Slatkin.) pp. 350–382. (Sinauer Associates: Sunderland, MS.)

Bonnet, X. , Bradshaw, S. D. , Shine, R. , and Pearson, D. (1999). Why do snakes have eyes? The (non-)effect of blindness in island tiger snakes (Notechis scutatus). Behavioral Ecology and Sociobiology 46, 267–272.
Crossref | GoogleScholarGoogle Scholar | Callait M. P. (1992). Le massif de Chaudron (Hautes Alpes), étude d’une endozootie de kérato-conjonctivite infectieuse contagieuse du mouton de Corse (Ovis ammon musimon). Ph.D. Thesis, ENVL, Lyon.

Chiszar, D. , Taylor, S. , Radcliffe, C. , Smith, H. , and O’Connell, B. (1981). Effects of chemical and visual stimuli upon chemosensory searching by garter snakes and rattlesnakes. Journal of Herpetology 15, 415–424.
Emerson S. B., Greene H. W., and Charnov E. L. (1994). Allometric aspects of predator–prey interactions. In ‘Ecological Morphology: Integrative Organismal Biology’. (Eds P. C. Wainwrightand and S. M. Reilly.) pp. 123–139. (University of Chicago Press: Chicago.)

Endler J. A. (1991). Interactions between predators and prey. In ‘Behavioural Ecology: an Evolutionary Approach’. (Eds J. R. Krebs and N. B. Davies.) pp. 169–196. (Blackwell Scientific Publications: Oxford.)

Fearn, S. (1993). The tiger snake Notechis scutatus (Serpentes: Elapidae) in Tasmania. Herpetofauna 23, 17–29.
Garland T.Jr, and Losos J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In ‘Ecological Morphology: Integrative Organismal Biology’. (Eds P. C. Wainwright and S. M. Reilly.) pp. 240–302. (University of Chicago Press: Chicago.)

Gauthier D. (1991). La kérato-conjonctivite infectieuse du chamois: étude épidémiologique dans le département de la Savoie 1983–1990. Thesis, ENVL, Lyon.

Grace, M. S. , Woodward, O. M. , Church, D. R. , and Calisch, G. (2001). Prey targeting by the infrared-imaging snake Python: effects of experimental and congenital visual deprivation. Behavioural Brain Research 119, 23–31.
Crossref | GoogleScholarGoogle Scholar | PubMed | Land M. F., and Nilsson D. E. (2002). ‘Animal Eyes.’ (Oxford University Press: New York.)

Langon X. (1996). La kérato-conjonctivite infectieuse contagieuse des ongulés de montagne. Etude du rôle étiologique de Staphylococcus aureus chez le mouton (Ovis ammon musimon). Thesis, ENVL, Lyon.

Lessard, N. , Pare, M. , Lepore, F. , and Lassonde, M. (1998). Early-blind human subjects localize sound sources better than sighted subjects. Nature 395, 278–280.
Crossref | GoogleScholarGoogle Scholar | PubMed | Salvini-Plawen L. V., and Mayr E. (1977). ‘On the Evolution of Photoreceptors and Eyes.’ (Plenum Press: New York.)

Shine, R. , and Sun, L. S. (2003). Attack strategy of an ambush predator: which attributes of the prey trigger a pit-viper’s strike? Functional Ecology 17, 340–348.
Crossref | GoogleScholarGoogle Scholar |

Shine, R. , Brown, G. P. , and Elphick, M. J. (2004). Field experiments on foraging in free-ranging water snakes Enhydris polylepis (Homalopsinae). Animal Behaviour 68, 1313–1324.
Crossref | GoogleScholarGoogle Scholar |

Teather, K. L. (1991). The relative importance of visual and chemical cues for foraging in newborn blue-striped garter snakes (Thamnophis sirtalis sirtalis). Behavior 117, 255–261.


Webb, J. K. , and Shine, R. (1993). Dietary habits of Australian blindsnakes. Copeia 1993, 762–770.


Wharton, C. H. (1969). The cottonmouth moccasin on Sea Horse Key, Florida. Bulletin of Florida State Museum, Biological Science 14, 227–272.