CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 2(2)

Measuring Marine Iron(iii) Complexes by CLE-AdSV

Raewyn M. Town A C, Herman P. van Leeuwen B

A Department of Chemistry, University of Southern Denmark, 5230 Odense, Denmark.
B Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands.
C Corresponding author. Email: rmt@chem.sdu.dk
 
PDF (216 KB) $25
 Export Citation
 Print
  

Environmental Context. Iron is an essential element for life in the world's oceans, and in some regions its concentration limits the growth of phytoplankton. The amount of iron(iii) which is available to an organism depends on the exact chemical form in which it exists, for example as dissolved ions or associated with organic compounds. There are widespread reports that marine iron(iii) is predominantly bound in extremely strong complexes. We show that such claims might be the result of an artefact of the measurement technique, CLE-AdSV. Ensuing ideas about the iron biogeochemistry in marine systems might require reconsideration as well.

Abstract. Iron(iii) speciation data, as determined by competitive ligand exchange?adsorptive stripping voltammetry (CLE-AdSV), is reconsidered in the light of the kinetic features of the measurement. The very large stability constants reported for iron(iii) in marine ecosystems are shown to be possibly due to an artefact of the technique, arising from the assumption that equilibrium is achieved between all iron(iii) species of relevance. Particular kinetic properties, related to the special nature of hydroxide as a metal complexant, have the consequence that CLE-AdSV measurements of iron(iii) in seawater generally correspond to the hydroxide complexes only. By the same token, dissolved hydroxide complexes are the key components of the bioavailable iron(iii) pool. The analysis presented herein opens opportunities to exploit CLE-AdSV for more rigorous investigation of the links between the speciation and the bioavailability of iron(iii).

Keywords: biogeochemistry ? electrochemistry (analysis) ? iron ? speciation (metals)


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014