Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions

Elvira Bura-Nakić A C , Marija Marguš A , Ivana Milanović A , Darija Jurašin B and Irena Ciglenečki A
+ Author Affiliations
- Author Affiliations

A Center for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.

B Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.

C Corresponding author. Email: ebnakic@irb.hr

Environmental Chemistry 11(2) 187-195 https://doi.org/10.1071/EN13090
Submitted: 10 May 2013  Accepted: 16 September 2013   Published: 11 December 2013

Environmental context. In anoxic environments FeS is both an important mediator in the Fe and S biogeochemical cycles and plays a vital role in controlling the scavenging and availability of many trace metals. Electrochemical detection of colloidal and particulate FeS in natural waters can be done by voltammetric measurements. The recorded anodic waves, however, are rather qualitative and lack information on the FeS concentration and size distribution.

Abstract. The interactions of FeS nanoparticles (NPs) with a hanging mercury drop electrode in NaCl solutions were monitored by chronoamperometric measurements. Collisions of FeS NPs with the mercury surface were studied over a wide range of electrode potentials (between 0 and –1.9 V v. Ag/AgCl). Faradaic impact transients were recorded only at the negative potentials (between –1.5 and –1.9 V). It was shown that the mercury electrode surface modified with a FeS adlayer catalyses sodium reduction by shifting the potentials of this process to more positive values. This catalytic process together with possible hydrogen evolution is assumed to be the physicochemical basis for the determination of FeS NPs. Chronoamperometric measurements at the electrode potential of –1.9 V showed that the reduction processes of sodium and hydrogen on FeS NPs upon collision are the main cause of sharp reduction current transients. At sufficiently positive electrode potentials (~–1.5 V) the colliding FeS NPs would not be immediately repelled; instead they remained adhered to the mercury surface, causing ‘staircase-like’ chronoamperometric signals. It appears that recorded reduction current transients are carrying FeS NPs’ size information, which is consistent with parallel dynamic light scattering (DLS) measurements.

Additional keywords: chronoamperometry, collision, Hg electrode.


References

[1]  J. R. Lead, K. J. Wilkinson, Environmental Colloids and Particles. IUPAC Series, Analytical and Physical Chemistry, Vol. 10 2007 (Wiley: Chichester, UK).

[2]  D. Krznarić, G. R. Helz, E. Bura-Nakić, D. Jurašin, Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example. Anal. Chem. 2008, 80, 742.
Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example.Crossref | GoogleScholarGoogle Scholar | 18183961PubMed |

[3]  E. Bura-Nakić, D. Krznarić, G. R. Helz, I. Ciglenečki, Characterization of iron sulfide species in model solutions by cyclic voltammetry. revisiting an old problem. Electroanalysis 2011, 23, 1376.
Characterization of iron sulfide species in model solutions by cyclic voltammetry. revisiting an old problem.Crossref | GoogleScholarGoogle Scholar |

[4]  G. R. Helz, I. Ciglenečki, D. Krznarić, E. Bura-Nakić, Voltammetry of sulfide nanoparticles and the FeS(aq) problem, in Aquatic Redox Chemistry (Eds P. G. Tratnyek, T. J. Grundl, S. B. Haderlein) 2011, pp. 265–282 (American Chemical Society: Washington DC).

[5]  E. Bura-Nakić, D. Krznarić, D. Jurasin, G. R. Helz, I. Ciglenečki, Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal. Chim. Acta 2007, 594, 44.
Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters.Crossref | GoogleScholarGoogle Scholar | 17560384PubMed |

[6]  I. Ciglenečki, D. Krznarić, G. R. Helz, Voltammetry of copper sulfide particles and nanoparticles; Investigation of the cluster hypothesis. Environ. Sci. Technol. 2005, 39, 7492.
Voltammetry of copper sulfide particles and nanoparticles; Investigation of the cluster hypothesis.Crossref | GoogleScholarGoogle Scholar | 16245820PubMed |

[7]  E. Bura-Nakić, E. Viollier, I. Ciglenečki, Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake. Envi. Sci. Tech. 2013, 47, 741.
Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake.Crossref | GoogleScholarGoogle Scholar |

[8]  M. Heyrovský, J. Jirkovský, Polarography and voltammetry of ultrasmall colloids: introduction to a new field. Langmuir 1995, 11, 4288.
Polarography and voltammetry of ultrasmall colloids: introduction to a new field.Crossref | GoogleScholarGoogle Scholar |

[9]  M. Heyrovský, J. Jirkovský, B. R. Muller, Polarography and voltammetry of aqueous colloidal SnO2 solutions. Langmuir 1995, 11, 4293.
Polarography and voltammetry of aqueous colloidal SnO2 solutions.Crossref | GoogleScholarGoogle Scholar |

[10]  M. Heyrovský, J. Jirkovský, M. Štruplová-Bartáčková, Polarography and voltammetry of aqueous colloidal TiO2 solutions. Langmuir 1995, 11, 4300.
Polarography and voltammetry of aqueous colloidal TiO2 solutions.Crossref | GoogleScholarGoogle Scholar |

[11]  M. Heyrovský, J. Jirkovský, M. Štruplová-Bartáčková, Polarography and voltammetry of mixed titanium(IV) oxide/iron(III) oxide colloids. Langmuir 1995, 11, 4309.
Polarography and voltammetry of mixed titanium(IV) oxide/iron(III) oxide colloids.Crossref | GoogleScholarGoogle Scholar |

[12]  V. Svetličić, A. Hozić, Probing cell surface charge by scanning electrode potential. Electrophoresis 2002, 23, 2080.
Probing cell surface charge by scanning electrode potential.Crossref | GoogleScholarGoogle Scholar | 12210262PubMed |

[13]  V. Svetličić, N. Ivošević, S. Kovač, V. Žutić, Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells. Langmuir 2000, 16, 8217.
Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells.Crossref | GoogleScholarGoogle Scholar |

[14]  V. Svetličić, N. Ivošević, S. Kovač, V. Žutić, Charge displacement by adhesion and spreading of a cell. Bioelectrochemistry 2001, 53, 79.
Charge displacement by adhesion and spreading of a cell.Crossref | GoogleScholarGoogle Scholar | 11206928PubMed |

[15]  S. Kovač, V. Svetličić, V. Žutić, Molecular adsorption vs. cell adhesion at an electrified aqueos interface. Colloids Surf. A Physicochem. Eng. Asp. 1999, 149, 481.
Molecular adsorption vs. cell adhesion at an electrified aqueos interface.Crossref | GoogleScholarGoogle Scholar |

[16]  D. Hellberg, F. Sholz, F. Shubert, M. Lovrić, D. Omanović, V. A. Hernandez, R. Thede, Kinetics of liposome adhesion on a mercury electrode. J. Phys. Chem. 2005, 109, 14715.
Kinetics of liposome adhesion on a mercury electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Krsro%3D&md5=020dec7536a4daf475ad7ead70f92316CAS |

[17]  R. Tsekov, S. Kovač, V. Žutić, Attachment of oil droplets and cells on dropping mercury electrode. Langmuir 1999, 15, 5649.
Attachment of oil droplets and cells on dropping mercury electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVOlt70%3D&md5=f22a60d85a34ca978c99d47248e60486CAS |

[18]  F. Scholz, D. Hellberg, F. Harnisch, A. Hummel, U. Hasse, Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochem. Commun. 2004, 6, 929.
Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1OgtrY%3D&md5=140f2e58f1741b9a5a99d705be362db8CAS |

[19]  X. Xiao, S. Pan, J. S. Jang, F. R. F. Fan, A. J. Bard, Single nanoparticle electrocatalysis: effect of monolayers on particle and electrode on electron transfer. J. Phys. Chem. C 2009, 113, 14978.
Single nanoparticle electrocatalysis: effect of monolayers on particle and electrode on electron transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVKms78%3D&md5=0ea5aac5c6602d3fbdac91bae29c6f00CAS |

[20]  X. Xiao, F. R. F. Fan, J. Zhou, A. J. Bard, Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 2008, 130, 16669.
Current transients in single nanoparticle collision events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOrs7zK&md5=4db62bcbb185bf8dd85ad2e6d38fa1c0CAS | 19554731PubMed |

[21]  X. Xiao, A. J. Bard, Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610.
Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Ckurs%3D&md5=5db144f69951935aa93ce42d33d5be8cCAS | 17630740PubMed |

[22]  H. Zhou, F. R. F. Fan, A. J. Bard, Observation of discrete au nanoparticle collisions by electrocatalytic amplification using Pt ultramicroelectrode surface modification. J. Phys. Chem. Lett. 2010, 1, 2671.
Observation of discrete au nanoparticle collisions by electrocatalytic amplification using Pt ultramicroelectrode surface modification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsb3E&md5=c1dec53ab5f8681016a2ba1d73f13e7fCAS |

[23]  A. D. Clegg, N. V. Rees, C. E. Banks, R. G. Compton, Ultrafast chronoamperometry of single impact events in acoustically agitated solid particulate suspensions. ChemPhysChem 2006, 7, 807.
Ultrafast chronoamperometry of single impact events in acoustically agitated solid particulate suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCgtbY%3D&md5=4fb790a1d2865321fd8f7618c933c869CAS | 16596608PubMed |

[24]  J. Cutress, N. V. Rees, Y. Zhou, R. G. Compton, Nanoparticle–electrode collision processes: investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles. J. Phys. Chem. Lett. 2011, 514, 58.
Nanoparticle–electrode collision processes: investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2kurjI&md5=0b02e8d6881fc6b35c3c40622e4678d9CAS |

[25]  Y. Zhou, N. V. Rees, R. G. Compton, Nanoparticle–electrode collision processes: the electroplating of bulk cadmium on impacting silver nanoparticles. J. Phys. Chem. Lett. 2011, 511, 183.
Nanoparticle–electrode collision processes: the electroplating of bulk cadmium on impacting silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFGit7s%3D&md5=d19d306db5d860cb1071ecdd389dabf9CAS |

[26]  Y. Zhou, N. V. Rees, R. G. Compton, The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. Int. Ed. 2011, 50, 4219.
The electrochemical detection and characterization of silver nanoparticles in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFyrur4%3D&md5=093f49ff96d783395d9921a315770f65CAS |

[27]  Y. Zhou, N. V. Rees, J. Pillay, R. Tshikhudo, S. Vilakazi, R. G. Compton, Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 2011, 48, 224.
Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes.Crossref | GoogleScholarGoogle Scholar |

[28]  Y. G. Zhou, N. V. Rees, R. G. Compton, Nanoparticle–electrode collision processes: the underpotential deposition of thalium on silver nanoparticles in aqueous solutions. ChemPhysChem 2011, 12, 2085.
Nanoparticle–electrode collision processes: the underpotential deposition of thalium on silver nanoparticles in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Chsr0%3D&md5=73f62092979135268a2ea6e619defdb9CAS | 21656636PubMed |

[29]  S. J. Kwon, F. R. F. Fan, A. J. Bard, Observing iridium oxide (IrOx) single nanoparticle collision at ultramicroelectrodes. J. Am. Chem. Soc. 2010, 132, 13165.
Observing iridium oxide (IrOx) single nanoparticle collision at ultramicroelectrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2ktLrK&md5=6e8ac2c0ed91b9371af1775fb5db7e32CAS | 20809574PubMed |

[30]  P. Salaün, B. Planer-Friedrich, C. M. G. van den Berg, Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal. Chim. Acta 2007, 585, 312.
Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode.Crossref | GoogleScholarGoogle Scholar | 17386680PubMed |

[31]  P. Salaün, C. M. G. van den Berg, Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal. Chem. 2006, 78, 5052.
Voltammetric detection of mercury and copper in seawater using a gold microwire electrode.Crossref | GoogleScholarGoogle Scholar | 16841929PubMed |

[32]  P. J. Brendel, G. W. Luther, Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and SII in porewaters of marine and freshwater sediments. Envi. Sci. Tech. 1995, 29, 751.
Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and SII in porewaters of marine and freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFajsLg%3D&md5=60d8afeb4b10087e552c3f04746fa4e1CAS |

[33]  J. A. Dean (Ed.), Lange’s Handbook of Chemistry, 12th edn 1979 (McGraw-Hill, Inc.: New York).

[34]  E. Itabashi, Influence of sulfide and cyanide ions on the electrochemical behavior of the FeII/Fe(Hg) system in thiocyanate solutions at mercury electrodes. J. Electroanal. Chem. 1981, 117, 295.
Influence of sulfide and cyanide ions on the electrochemical behavior of the FeII/Fe(Hg) system in thiocyanate solutions at mercury electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXpt1GrtQ%3D%3D&md5=ada55c65f6cca887a4d180f86a8cd590CAS |

[35]  K. Winkler, T. Krogulec, Z. Galus, Formation of FeS and its effect on the electrode reactions of the FeII/Fe system in thiocyanate solutions at mercury electrodes. Electrochim. Acta 1985, 30, 1055.
Formation of FeS and its effect on the electrode reactions of the FeII/Fe system in thiocyanate solutions at mercury electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFaisLo%3D&md5=9cf73b1c1d5fb0d4031f859d8c655ef7CAS |

[36]  K. Winkler, S. Kalinowski, T. Krogulec, A study of the deposition of iron on mercury and glassy carbon electrodes. J. Electroanal. Chem. 1988, 252, 303.
A study of the deposition of iron on mercury and glassy carbon electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtl2ht74%3D&md5=d8b29401fc2aaf40beed5c12ede48f96CAS |

[37]  K. Winkler, T. Krogulec, The study of electrode processes of Fe(II)-thiosulphate complexes on mercury electrodes. J. Electroanal. Chem. 1995, 386, 127.
The study of electrode processes of Fe(II)-thiosulphate complexes on mercury electrodes.Crossref | GoogleScholarGoogle Scholar |

[38]  I. Milanović, D. Krznarić, E. Bura-Nakić, I. Ciglenečki, Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions. Environ. Chem. 2013,

[39]  W. Davison, N. Phillips, B. J. Tabner, Soluble iron sulfide species in natural waters: Reappraisal of their stoichiometry and stability constants. Aquat. Sci. 1999, 61, 23.
Soluble iron sulfide species in natural waters: Reappraisal of their stoichiometry and stability constants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVCnt7w%3D&md5=d17edc3fe89761e7e223024a3b3fec1fCAS |

[40]  M. Wolthers, L. Charlet, P. R. van der Linde, D. Rickard, C. H. van der Weijden, Arsenic mobility in the ambient sulphidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 2005, 69, 3469.
Arsenic mobility in the ambient sulphidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlKltb4%3D&md5=8551814c009a0e49dc4d933c6ebcd9efCAS |