CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(3)

Nanoparticle core properties affect attachment of macromolecule-coated nanoparticles to silica surfaces

Ernest M. Hotze A B , Stacey M. Louie A B , Shihong Lin A C , Mark R. Wiesner A C and Gregory V. Lowry A B D

A Center for Environmental Implications of NanoTechnology (CEINT), PO Box 90287, Duke University, Durham, NC 27708-0287, USA.
B Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
C Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC 27708-0287, USA.
D Corresponding author. Email: glowry@andrew.cmu.edu

Environmental Chemistry 11(3) 257-267 http://dx.doi.org/10.1071/EN13191
Submitted: 22 October 2013  Accepted: 15 February 2014   Published: 5 June 2014


 
PDF (516 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. The increasing use of engineered nanoparticles has led to concerns over potential exposure to these novel materials. Predictions of nanoparticle transport in the environment and exposure risks could be simplified if all nanoparticles showed similar deposition behaviour when coated with macromolecules used in production or encountered in the environment. We show, however, that each nanoparticle in this study exhibited distinct deposition behaviour even when coated, and hence risk assessments may need to be specifically tailored to each type of nanoparticle.

Abstract. Transport, toxicity, and therefore risks of engineered nanoparticles (ENPs) are unquestionably tied to interactions between those particles and surfaces. In this study, we proposed the simple and untested hypothesis that coating type can be the predominant factor affecting attachment of ENPs to silica surfaces across a range of ENP and coating types, effectively masking the contribution of the particle core to deposition behaviour. To test this hypothesis, TiO2, Ag0 and C60 nanoparticles with either no coating or one of three types of adsorbed macromolecules (poly(acrylic acid), humic acid and bovine serum albumin) were prepared. The particle size and adsorbed layer thicknesses were characterised using dynamic light scattering and soft particle electrokinetic modelling. The attachment efficiencies of the nanoparticles to silica surfaces (glass beads) were measured in column experiments and compared with predictions from a semi-empirical correlation between attachment efficiency and coated particle properties that included particle size and layer thickness. For the nanoparticles and adsorbed macromolecules in this study, the attachment efficiencies could not be explained solely by the coating type. Therefore, the hypothesis that adsorbed macromolecules will mask the particle core and control attachment was disproved, and information on the properties of both the nanoparticle surface (e.g. charge and hydrophobicity) and adsorbed macromolecule (e.g. molecular weight, charge density extended layer thickness) will be required to explain or predict interactions of coated nanoparticles with surfaces in the environment.



References

[1]  M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology: Applications and Impacts of Nanomaterials 2007 (McGraw-Hill: New York).

[2]  M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, R. T. Di Giulio, E. Casman, E. S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458.
CrossRef | CAS | PubMed |

[3]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
CrossRef | CAS | PubMed |

[4]  A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
CrossRef | CAS | PubMed |

[5]  A. Tiraferri, R. Sethi, Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res. 2009, 11, 635.
CrossRef | CAS |

[6]  F. He, M. Zhang, T. W. Qian, D. Y. Zhao, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 2009, 334, 96.
CrossRef | CAS | PubMed |

[7]  J. E. Song, T. Phenrat, S. Marinakos, Y. Xiao, J. Liu, M. R. Wiesner, R. D. Tilton, G. V. Lowry, Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ. Sci. Technol. 2011, 45, 5988.
CrossRef | CAS | PubMed |

[8]  M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101.
CrossRef |

[9]  D. Walczyk, F. B. Bombelli, M. P. Monopoli, I. Lynch, K. A. Dawson, What the cell ‘sees’ in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761.
CrossRef | CAS | PubMed |

[10]  Y. G. Wang, Y. S. Li, J. D. Fortner, J. B. Hughes, L. M. Abriola, K. D. Pennell, Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ. Sci. Technol. 2008, 42, 3588.
CrossRef | CAS |

[11]  Y. S. Li, Y. G. Wang, K. D. Pennell, L. M. Abriola, Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 2008, 42, 7174.
CrossRef | CAS |

[12]  B. Espinasse, E. M. Hotze, M. R. Wiesner, Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 2007, 41, 7396.
CrossRef | CAS | PubMed |

[13]  S. H. Lin, Y. W. Cheng, Y. Bobcombe, K. L. Jones, J. Liu, M. R. Wiesner, Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ. Sci. Technol. 2011, 45, 5209.
CrossRef | CAS |

[14]  I. G. Godinez, C. J. G. Darnault, Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res. 2011, 45, 839.
CrossRef | CAS | PubMed |

[15]  N. Solovitch, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M. R. Wiesner, J. Y. Bottero, Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 2010, 44, 4897.
CrossRef | CAS | PubMed |

[16]  X. Y. Liu, M. Wazne, T. M. Chou, R. Xiao, S. Y. Xu, Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media. Water Res. 2011, 45, 105.
CrossRef | CAS |

[17]  B. Uyusur, C. J. G. Darnault, P. T. Snee, E. Koken, A. R. Jacobson, R. R. Wells, Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J. Contam. Hydrol. 2010, 118, 184.
CrossRef | CAS | PubMed |

[18]  X. Y. Liu, D. M. O’Carroll, E. J. Petersen, Q. G. Huang, C. L. Anderson, Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 2009, 43, 8153.
CrossRef | CAS |

[19]  Z. Li, E. Sahle-Demessie, A. A. Hassan, G. A. Sorial, Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res. 2011, 45, 4409.
CrossRef | CAS | PubMed |

[20]  K. M. Sirk, N. B. Saleh, T. Phenrat, H. J. Kim, B. Dufour, J. Ok, P. L. Golas, K. Matyjaszewski, G. V. Lowry, R. D. Tilton, Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ. Sci. Technol. 2009, 43, 3803.
CrossRef | CAS | PubMed |

[21]  X. J. Jiang, M. P. Tong, H. Y. Li, K. Yang, Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. J. Colloid Interface Sci. 2010, 350, 427.
CrossRef | CAS |

[22]  P. Yi, K. L. Chen, Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir 2011, 27, 3588.
CrossRef | CAS | PubMed |

[23]  K. L. Chen, M. Elimelech, Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol. 2009, 43, 7270.
CrossRef | CAS | PubMed |

[24]  B. Smith, K. Wepasnick, K. E. Schrote, A. H. Bertele, W. P. Ball, C. O’Melia, D. H. Fairbrother, Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 819.
CrossRef | CAS | PubMed |

[25]  T. Phenrat, N. Saleh, K. Sirk, H. J. Kim, R. D. Tilton, G. V. Lowry, Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 2008, 10, 795.
CrossRef | CAS |

[26]  S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag, S. Franzen, Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303.
CrossRef | CAS | PubMed |

[27]  S. M. Louie, R. D. Tilton, G. V. Lowry, Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol. 2013, 47, 4245.
CrossRef | CAS | PubMed |

[28]  I. Chowdhury, D. M. Cwiertny, S. L. Walker, Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ. Sci. Technol. 2012, 46, 6968.
CrossRef | CAS | PubMed |

[29]  X. Y. Liu, M. Wazne, Y. Han, C. Christodoulatos, K. L. Jasinkiewicz, Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes. J. Colloid Interface Sci. 2010, 348, 101.
CrossRef | CAS |

[30]  A. Hitchman, G. H. S. Smith, Y. Ju-Nam, M. Sterling, J. R. Lead, The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 2013, 90, 410.
CrossRef | CAS | PubMed |

[31]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
CrossRef | CAS | PubMed |

[32]  D. P. Stankus, S. E. Lohse, J. E. Hutchison, J. A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2011, 45, 3238.
CrossRef | CAS | PubMed |

[33]  B. Smith, J. Yang, J. L. Bitter, W. P. Ball, D. H. Fairbrother, Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Environ. Sci. Technol. 2012, 46, 12 839.
CrossRef | CAS |

[34]  J. F. Liu, S. Legros, F. Von der Kammer, T. Hofmann, Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ. Sci. Technol. 2013, 47, 4113.
CrossRef | CAS |

[35]  B. Derjaguin, A theory of interaction of particles in presence of electric double-layers and the stability of lyophobe colloids and disperse systems. Prog. Surf. Sci. 1993, 43, 1.
CrossRef |

[36]  E. J. W. Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids 1948 (Elsevier: Amsterdam).

[37]  B. Vincent, P. F. Luckham, F. A. Waite, Effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci. 1980, 73, 508.
CrossRef | CAS |

[38]  T. Phenrat, J. E. Song, C. M. Cisneros, D. P. Schoenfelder, R. D. Tilton, G. V. Lowry, Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ. Sci. Technol. 2010, 44, 4531.
CrossRef | CAS | PubMed |

[39]  J. L. Ortega-Vinuesa, A. Martin-Rodriguez, R. H. Hidalgo-Alvarez, Colloidal stability of polymer colloids with different interfacial properties: mechanisms. J. Colloid Interface Sci. 1996, 184, 259.
CrossRef | CAS | PubMed |

[40]  H. Ohshima, Electrophoresis of soft particles. Adv. Colloid Interfac. 1995, 62, 189.
CrossRef | CAS |

[41]  R. J. Hill, D. A. Saville, W. B. Russel, Electrophoresis of spherical polymer-coated colloidal particles. J. Colloid Interface Sci. 2003, 258, 56.
CrossRef | CAS |

[42]  J. F. L. Duval, H. Ohshima, Electrophoresis of diffuse soft particles. Langmuir 2006, 22, 3533.
CrossRef | CAS |

[43]  S. H. Lin, M. R. Wiesner, Theoretical investigation on the interaction between a soft particle and a rigid surface. Chem. Eng. J. 2012, 191, 297.
CrossRef | CAS |

[44]  S. M. Louie, T. Phenrat, M. J. Small, R. D. Tilton, G. V. Lowry, Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids. Langmuir 2012, 28, 10 334.
CrossRef | CAS |

[45]  M. Borkovec, I. Szilagyi, I. Popa, M. Finessi, P. Sinha, P. Maroni, G. Papastavrou, Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique. Adv. Colloid Interfac. 2012, 179–182, 85.
CrossRef |

[46]  P. L. Golas, S. Louie, G. V. Lowry, K. Matyjaszewski, R. D. Tilton, Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 2010, 26, 16 890.
CrossRef | CAS |

[47]  S. R. Chae, S. Y. Wang, Z. D. Hendren, M. R. Wiesner, Y. Watanabe, C. K. Gunsch, Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J. Membr. Sci. 2009, 329, 68.
CrossRef | CAS |

[48]  X. K. Cheng, A. T. Kan, M. B. Tomson, Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. J. Nanopart. Res. 2005, 7, 555.
CrossRef | CAS |

[49]  G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces 1993 (Chapman & Hall: London).

[50]  H. J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid Interface Sci. 2012, 370, 1.
CrossRef | CAS | PubMed |

[51]  H. J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 2009, 43, 3824.
CrossRef | CAS | PubMed |

[52]  T. L. Doane, C. H. Chuang, R. J. Hill, C. Burda, Nanoparticle zeta-potentials. Acc. Chem. Res. 2012, 45, 317.
CrossRef | CAS | PubMed |

[53]  W. M. Haynes (Ed.), Geophysics, astronomy, and acoustics, in CRC Handbook of Chemistry and Physics, 94th edn 2013, pp. 14–18 (CRC Press: Boca Raton, FL).

[54]  N. Tufenkji, M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 2004, 38, 529.
CrossRef | CAS | PubMed |

[55]  M. Elimelech, W. H. Chen, J. J. Waypa, Measuring the zeta (electrokinetic) potential of reverse-osmosis membranes by a streaming potential analyzer. Desalination 1994, 95, 269.
CrossRef | CAS |

[56]  D. C. Henry, The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 1931, 133, 106.
CrossRef | CAS |

[57]  J. E. Gebhardt, D. W. Fuerstenau, Adsorption of polyacrylic acid at oxide–water interfaces. Colloids Surf. 1983, 7, 221.
CrossRef | CAS |

[58]  J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, J. V. Weber, Photocatalytic decomposition of humic acids on TiO2. Part I. Discussion of adsorption and mechanism. J. Photoch. Photobio. A 2002, 152, 267.
CrossRef | CAS |

[59]  K. A. Huynh, K. L. Chen, Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 2011, 45, 5564.
CrossRef | CAS | PubMed |

[60]  K. L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309, 126.
CrossRef | CAS | PubMed |

[61]  K. L. Chen, M. Elimelech, Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ. Sci. Technol. 2008, 42, 7607.
CrossRef | CAS | PubMed |

[62]  S. R. Chae, A. R. Badireddy, J. F. Budarz, S. H. Lin, Y. Xiao, M. Therezien, M. R. Wiesner, Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport. ACS Nano 2010, 4, 5011.
CrossRef | CAS | PubMed |

[63]  K. J. Wilkinson, E. Balnois, G. G. Leppard, J. Buffle, Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloid. Surface. A 1999, 155, 287.
CrossRef | CAS |

[64]  R. L. Williams, D. F. Williams, Albumin adsorption on metal-surfaces. Biomaterials 1988, 9, 206.
CrossRef | CAS | PubMed |

[65]  S. H. Lin, M. R. Wiesner, Deposition of aggregated nanoparticles – a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environ. Sci. Technol. 2012, 46, 13 270.
CrossRef | CAS |

[66]  S. Deguchi, T. Yamazaki, S. Mukai, R. Usami, K. Horikoshi, Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem. Res. Toxicol. 2007, 20, 854.
CrossRef | CAS | PubMed |

[67]  R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz, H. J. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984.
CrossRef | CAS | PubMed |

[68]  A. A. Keller, H. T. Wang, D. X. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Z. X. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
CrossRef | CAS | PubMed |

[69]  R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
CrossRef | CAS | PubMed |

[70]  X. A. Li, J. J. Lenhart, H. W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010, 26, 16 690.
CrossRef | CAS |

[71]  S. H. Lin, Y. W. Cheng, J. Liu, M. R. Wiesner, Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 2012, 28, 4178.
CrossRef | CAS |

[72]  J. Brant, H. Lecoanet, M. Hotze, M. Wiesner, Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ. Sci. Technol. 2005, 39, 6343.
CrossRef | CAS | PubMed |

[73]  Y. G. Wang, Y. S. Li, J. Costanza, L. M. Abriola, K. D. Pennell, Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Environ. Sci. Technol. 2012, 46, 11 761.
CrossRef | CAS |

[74]  D. Grolimund, M. Elimelech, M. Borkovec, Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloid Surf. A 2001, 191, 179.
CrossRef | CAS |

[75]  S. Walker, M. Elimelech, J. Redman, Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems. Environ. Sci. Technol. 2006, 40, 5586.
CrossRef | CAS |

[76]  C. Flood, T. Cosgrove, D. Qiu, Y. Espidel, I. Howell, P. Revell, Influence of a surfactant and electrolytes on adsorbed polymer layers. Langmuir 2007, 23, 2408.
CrossRef | CAS | PubMed |

[77]  D. H. Tsai, M. Davila-Morris, F. W. DelRio, S. Guha, M. R. Zachariah, V. A. Hackley, Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir 2011, 27, 9302.
CrossRef | CAS | PubMed |

[78]  C. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
CrossRef | CAS | PubMed |

[79]  B. L. T. Lau, W. C. Hockaday, K. Ikuma, O. Furman, A. W. Decho, A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloid Surf. A 2013, 435, 22.
CrossRef | CAS |

[80]  S. J. Mears, T. Cosgrove, L. Thompson, I. Howell, Solvent relaxation NMR measurements on polymer, particle, surfactant systems. Langmuir 1998, 14, 997.
CrossRef | CAS |

[81]  K. K. Au, S. L. Yang, C. R. O’Melia, Adsorption of weak polyelectrolytes on metal oxide surfaces: a hybrid SC/SF approach. Environ. Sci. Technol. 1998, 32, 2900.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014