CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |              Online Early    

Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions

Niksa Odzak A B , David Kistler A , Renata Behra A and Laura Sigg A

A Eawag, Swiss Federal Institute of Aquatic Science & Technology, Department Environmental Toxicology (Utox), CH-8600 Dübendorf, Switzerland.
B Corresponding author. Email: odzak@eawag.ch

Environmental Chemistry - http://dx.doi.org/10.1071/EN14049
Submitted: 6 March 2014  Accepted: 19 May 2014   Published online: 15 September 2014


 
PDF (1 MB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Engineered nanomaterials (e.g. silver, zinc oxide and copper oxide) are being widely used in many consumer products such as cosmetics, food packaging and textiles. During their usage and treatment, they will be released to natural waters and partly dissolve, depending on the water type and nanomaterial characteristics. These nanomaterials may thus have some toxic effects to aquatic organisms and indirectly to humans because of higher concentrations of dissolved silver, zinc and copper in natural waters.

Abstract. The dissolution of some widely used nanoparticles (NPs), Ag (citrate coated), ZnO, CuO and Cu-carbon coated (Cu/C), has been studied over a period of 9 days in five different natural waters: wastewater treatment plant effluent (WWTP Dübendorf) and lakes Greifen, Lucerne, Gruère and Cristallina. These waters differ in ionic strength, pH and dissolved organic carbon (DOC). The dissolved fraction of metals from NPs was determined using DGT (diffusion gradients in thin films) and ultrafiltration (UF). ZnO-NPs and CuO-NPs dissolved to a large extent in all waters, whereas the dissolved fraction was much smaller in the case of Cu/C and Ag-NPs. All NPs dissolved to a larger extent in water from Lake Cristallina with low pH, low ionic strength and low DOC. Ag-NP dissolution was favoured at low ionic strength and low pH, whereas dissolution of CuO-NPs was mostly dependent on pH. Cu/C-NPs strongly agglomerated and sedimented and yielded low dissolved Cu concentrations. DGT and UF produced similar results, although these two methods differ in the measurement time scale. The results of this study indicate that dissolution is an important process for these NPs under conditions of natural waters or wastewaters.



References

[1]  B. P. Barnett, A. Arepally, P. V. Karmarkar, D. Qian, W. D. Gilson, P. Walczak, V. Howland, L. Lawler, C. Lauzon, M. Stuber, D. L. Kraitchman, J. W. M. Bulte, Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med. 2007, 13, 986.
CrossRef | CAS | PubMed |

[2]  Y. Dong, S. S. Feng, In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomater 2007, 28, 4154.
CrossRef | CAS |

[3]  O. V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2004, 2, 3.
CrossRef |

[4]  M. Lens, Use of fullerenes in cosmetics. Recent Pat. Biotechnol. 2009, 3, 118.
CrossRef | CAS | PubMed |

[5]  R. H. Müller, M. Radtke, S. A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparation. Adv. Drug Delivery Rev. 2002, 54, S131.
CrossRef |

[6]  S. N. Pavasupree, M. Nakajima, Y. Suzuki, S. Yoshikawa, Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J. Photochem. Photobiol. 2006, 184, 163.
CrossRef | CAS |

[7]  D. Wei, H. E. Unalan, D. X. Han, Q. X. Zhang, L. Niu, G. Amaratunga, T. A. Ryhanen, Solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate. Nanotechnology 2008, 19, 424006.
CrossRef | PubMed |

[8]  W. Tungittiplakorn, L. W. Lion, C. Cohen, J. Y. Kim, Engineered polymeric nanoparticles for soil remediation. Environ. Sci. Technol. 2004, 38, 1605.
CrossRef | CAS | PubMed |

[9]  W. X. Zhang, Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323.
CrossRef | CAS |

[10]  A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, P. N. Prasad, Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. 2008, 112, 10 721.
| CAS |

[11]  National Science Foundation, Nanotechnology research directions for societal needs in 2020: retrospective and outlook summary, in Science Policy Reports (Eds M. Roco, C. Mirkin, M. Hersan) 2010, pp. 1–28 (Springer: New York).

[12]  K. Schmid, M. Riediker, Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol. 2008, 42, 2253.
CrossRef | CAS | PubMed |

[13]  M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127.
CrossRef | CAS | PubMed |

[14]  N. C. Mueller, B. Nowack, Exposure modelling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447.
CrossRef | CAS | PubMed |

[15]  M. R. Wiesner, J. Y. Bottero, Nanotechnology and the environment, in Environmental Nanotechnology – Applications and Impacts of Nano-materials (Eds M. R. Wiesner, J. Y. Bottero) 2007, pp. 3–15 (McGraw Hill: New York).

[16]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
CrossRef | CAS | PubMed |

[17]  M. A. A. Schoonen, C. A. Cohn, E. Roemer, R. Laffers, S. R. Simon, T. O'Riordan, Mineral-induced formation of reactive oxygen species. Med. Mineraol. Geochem. 2006, 64, 179.
CrossRef | CAS |

[18]  R. D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicol. 2008, 17, 315.
CrossRef | CAS |

[19]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
CrossRef | CAS | PubMed |

[20]  D. M. Templeton, F. Ariese, R. Cornelis, L.-G. Danielsson, H. Muntau, H. P. Van Leeuwen, R. Lobinski, Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem. 2000, 72, 1453.
CrossRef | CAS |

[21]  C. Coutris, T. Hertel-Aas, E. Lapied, E. J. Joner, D. H. Oughton, Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186.
CrossRef | CAS | PubMed |

[22]  R. Ma, C. Levard, S. M. Marinakos, Y. W. Cheng, J. Liu, F. M. Michel, G. E. Brown, G. V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 752.
CrossRef | CAS | PubMed |

[23]  E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959.
CrossRef | CAS | PubMed |

[24]  T. S. Radniecki, D. P. Stankus, A. Neigh, J. A. Nason, L. Semprini, Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 2011, 85, 43.
CrossRef | CAS | PubMed |

[25]  W. Davison, H. Zhang, In situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 1994, 367, 546.
CrossRef | CAS |

[26]  W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
CrossRef | CAS |

[27]  N. Odzak, D. Kistler, H. B. Xue, L. Sigg, In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT). Aquat. Sci. 2002, 64, 292.
CrossRef | CAS |

[28]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Nöel, J. Nur, N. Odzak, J. Puy, W. van Riemsdijk, E. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. Weng, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
CrossRef | CAS | PubMed |

[29]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
CrossRef | CAS |

[30]  N. Odzak, D. Kistler, R. Behra, L. Sigg, Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ. Pollut. 2014, 191, 132.
CrossRef | CAS | PubMed |

[31]  G. E. Batley, S. C. Apte, J. L. Stauber, Speciation and bioavailabillity of trace metals in water: progress since 1982. Aust. J. Chem. 2004, 57, 903.
CrossRef | CAS |

[32]  P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[33]  P. G. C. Campbell, O. Errécalde, C. Fortin, V. P. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton – applicability of the biotic ligand model. Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2002, 133, 189.
CrossRef |

[34]  L. Sigg, R. Behra, Speciation and bioavailability of trace metals in freshwater environments, in Biogeochemistry, Availability, and Transport of Metals in the Environment (Eds A. Sigel, H. Sigel, R. K. O. Sigel) 2005, pp. 47–73 (Taylor & Francis Group: Boca Raton, FL).

[35]  F. Piccapietra, C. Gil-Allué, L. Sigg, R. Behra, Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ. Sci. Technol. 2012, 46, 7390.
CrossRef | CAS | PubMed |

[36]  Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271.
CrossRef | CAS | PubMed |

[37]  F. Piccapietra, L. Sigg, R. Behra, Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ. Sci. Technol. 2012, 46, 818.
CrossRef | CAS | PubMed |

[38]  G. A. Sotiriou, A. Meyer, J. T. N. Knijnenburg, S. Panke, S. E. Pratsinis, Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 2012, 28, 15 929.
CrossRef | CAS |

[39]  H. Zhang, Practical Guide for Making Diffusive Gel and Chelex Gel 2004 (DGT Research Ltd: Lancaster, UK).

[40]  H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
CrossRef | CAS |

[41]  J. P. Gustafsson, Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244, 102.
CrossRef | CAS |

[42]  Z.-M. Xiu, J. Ma, P. J. J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, 9003.
CrossRef | CAS | PubMed |

[43]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
CrossRef | CAS | PubMed |

[44]  Z. Chen, P. G. C. Campbell, C. Fortin, Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis. J. Phys. Chem. 2012, 116, 6532.
CrossRef | CAS |

[45]  C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, G. E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738.
CrossRef | CAS | PubMed |

[46]  E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
CrossRef | CAS |

[47]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014