Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Can bare ground cover server as a surrogate for plant biodiversity in grazed tropical woodlands?

Juliana McCosker A D , John Rolfe B and Rod Fensham C
+ Author Affiliations
- Author Affiliations

A Environmental Protection Agency, PO Box 906 Emerald, Qld 4720, Australia.

B Central Queensland University, Rockhampton, Qld 4701, Australia.

C Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Road Toowong, Qld 4066, Australia.

D Corresponding author. Email: juliana.mccosker@epa.qld.gov.au

The Rangeland Journal 31(1) 103-109 https://doi.org/10.1071/RJ08041
Submitted: 9 September 2008  Accepted: 17 February 2009   Published: 26 March 2009

Abstract

A bare ground index derived by remote sensing would provide a rapid methodology for assessing the biodiversity condition of an ecosystem, providing that ground cover is a satisfactory correlate with key biodiversity attributes. The relationship between plant species richness and the abundance of individual species was examined in relation to ground cover within silver-leaved ironbark (Eucalyptus melanophloia F. Muell.) woodlands in the Desert Uplands bioregion of north-eastern Australia. There was significant correlation between the bare ground index and ground cover and biomass measurements. Twenty-four species, including the perennial grasses Sehima nervosum (Rottler) Stapf, Themeda triandra Forssk. and Bothriocloa ewartiana (Domin) C.E. Hubb., were significantly and negatively correlated with bare ground. Scleroleana birchii (F. Muell.) Domin and Sida fibulifera Lindl.displayed significant positive relationships with increasing bare ground, and where abundant indicate heavy grazing in this land type. The study suggests that satellite-derived data does provide a meaningful methodology for assessing vegetation condition although it is strongly associated with seasonal conditions, but is only useful in relation to the regional average for a land type. The findings suggest that plant diversity is maintained at a relatively high level throughout most of these woodlands in the Desert Uplands.

Additional keywords: bare ground index, biodiversity condition, grazing, plant composition, silver-leaved ironbark.


Acknowledgements

We would like to thank the following people who assisted with fieldwork: Joe Halloran, John Augusteyn, Samantha Evans, Cameron James, Karen Aitchison and Tim Murphy. Many thanks to all the property owners who allowed us access to the sites. Thank you also to two anonymous reviewers and Dr A.J. Pressland for useful comments that helped to improve this manuscript.


References


Anderson E. (1993). ‘Plants of Central Queensland – their Identification and Uses.’ (Department of Primary Industries: Brisbane.)

Ash A. , Corfield J. , and Ksiksi T. (2001). The Ecograze Project – developing guidelines to better manage grazing country. CSIRO, Townsville.

Bastin G. , and the ACRIS Committee (2008). ‘Rangelands 2008 – Taking the Pulse.’ (National Land and Water Resources Audit: Canberra.)

Department of Natural Resources and Water (2007). Delbessie Agreement. State Rural Leasehold Land Strategy. Available at: www.nrw.qld.gov.au (accessed 9 March 2009).

Dube S. , Kalua F. , and Mkunggurutse (1999). The importance of ground-cover in reducing erosion and run-off in a semi-arid rangeland. In: ‘Sixth International Rangeland Congress Proceedings’. Townsville, Qld. pp. 706–707.

Fairfax R. J., Fensham R. J. (2000) The effect of exotic pasture development on floristic diversity in central Queensland, Australia. Biological Conservation 94, 11–21.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fensham R. J., Skull S. D. (1999) Before cattle: a comparative floristic study of Eucalyptus savanna grazed by macropods and cattle in North Queensland, Australia. Biotropica 31, 37–47. open url image1

Gibbons P., Freudenberg D. (2006) An overview of methods used to assess vegetation condition at the scale of the site. Ecological Management & Restoration 7, S10–S17.
Crossref | GoogleScholarGoogle Scholar | open url image1

Henderson R. J. F. (Ed.) (2002). ‘Names and distribution of Queensland plants, algae and lichens.’ (Queensland Herbarium, Queensland Environmental Protection Agency: Brisbane.)

Jackson J. (2005) Is there a relationship between species richness and buffel grass (Cenchrus ciliaris). Austral Ecology 30, 505–517.
Crossref | GoogleScholarGoogle Scholar | open url image1

Landsberg J., Crowley G. (2004) Monitoring rangeland biodiversity: plants as indicators. Austral Ecology 29, 59–77.
Crossref | GoogleScholarGoogle Scholar | open url image1

Landsberg J., James C. D., Morton S. R., Muller W. J., Stol J. (2003) Abundance and composition of plant species along grazing gradients in Australian rangelands. Journal of Applied Ecology 40, 1008–1024.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lindenmayer D. , Crane M. , and Michael D. (2005). ‘Woodlands: a disappearing landscape.’ (CSIRO Publishing: Collingwood, Vic.)

Ludwig J. A., Bastin G. N., Wallace J. F., McVicar T. R. (2007) Assessing landscape health by scaling with remote sensing: when is it not enough? Landscape Ecology 22, 163–169.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lunt I. D., Eldridge D. J., Morgan J. W., Witt B. (2007) A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Australian Journal of Botany 55, 401–415.
Crossref | GoogleScholarGoogle Scholar | open url image1

MacLeod N. D., McIvor J. G. (2006) Reconciling economic and ecological conflicts in the use of grazing lands. Ecological Economics 56, 386–401.
Crossref | GoogleScholarGoogle Scholar | open url image1

McCullough M. , and Musso B. (Eds) (2004). ‘Healthy Rangelands – Principles for Sustainable Systems.’ (Tropical Savannas CRC: Darwin, NT.)

McIntyre S., Filet P. G. (1997) Choosing appropriate taxonomic units for ecological survey and experimentation: the response of Aristida to management and landscape factors as an example. The Rangeland Journal 19, 26–39.
Crossref | GoogleScholarGoogle Scholar | open url image1

McIvor J. G. (2007) Pasture management in semi-arid tropical woodlands: dynamics of perennial grasses. The Rangeland Journal 29, 87–100.
Crossref | GoogleScholarGoogle Scholar | open url image1

McKeon G. M. , Hall W. B. , Henry B. K. , Stone G. S. , and Watson I. W. (2004). ‘Pasture Degradation and Recovery in Australia’s Rangelands: Learning from History.’ (Queensland Department of Natural Resources, Mines and Energy: Brisbane.)

Mott J. J. (1987). Patch grazing and degradation in native pasture of the tropical savannas in Northern Australia. In: ‘Grazing Land Research at the Plant–Animal Interface’. (Eds P. P. Horan, J. Hodgson, J. J. Mott and R. W. Brougham.) pp. 153–166. (Winrock International: Little Rock, AR.)

Patridge I. (2000). ‘Managing Grazing in the Semi-arid Woodlands: a Graziers Guide.’ (Department of Primary Industries: Brisbane.)

Pickup G., Bastin G. N., Chewing V. H. (1994) Remote sensing-based condition assessment for non-equilibrium rangelands under large-scale commercial grazing. Ecological Applications 4, 497–517.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pringle H. J. R., Landsberg J. (2004) Predicting the distribution of livestock grazing pressure in rangelands. Austral Ecology 29, 31–39.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sattler P. S. , and Williams R. D. (Eds) (1999). ‘The Conservation Status of Queensland’s Bioregional Ecosystems.’ (Environmental Protection Agency: Brisbane.)

Scanlan J. C. , and McIvor I. G. (1993). Pasture composition influences soil erosion in Eucalyptus woodlands of northern Queensland. In: ‘Proceedings of the XVII International Grassland Congress’. pp. 65–66. (New Zealand Grassland Association, Tropical Grasslands Society of Australia, New Zealand Society of Animal Production, Australian Society of Animal Production, Queensland Branch and New Zealand Institute of Agricultural Science: Palmerston North, New Zealand.)

Scarth P. , Byrne M. , Danaher T. , Henry B. , Hassett R. , Carter J. , and Timmers P. (2006). State of the paddock: monitoring condition and trend in ground cover across Queensland. In: ‘Proceedings of 13th Australasian Remote Sensing and Photogrammetry Conference’. (The Remote Sensing and Photogrammetry Commission of Spatial Sciences Institute: Canberra, ACT.)

Turner E. J. , Beeston G. R. , Lee A. N. , Ahern C. R. , and Hughes K. K. (1978) Western Arid Use Study, Part IV. Technical Bulletin 23, Division of Land Utilisation, Department of Primary Industries, Brisbane.

Vesk P. A., Westoby M. (2001) Predicting plant species responses to grazing. Journal of Applied Ecology 38, 897–909.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wallace J., Behn G., Furby S. (2006) Vegetation condition assessment and monitoring from sequences of satellite imagery. Ecological Management & Restoration 7, S31–S36.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ward D. P., Kutt A. S. (2009) Rangeland biodiversity assessment using finescale on-ground survey, time series of remotely sensed ground cover and climate data: an Australian Savanna case study. Landscape Ecology 24, 495–507.
Crossref |
open url image1









Appendix 1. Significant relationships with bare ground are listed

For 25 species with no significant relationships are listed with their frequency in parenthesis. Perennial grasses: Aristida jerichoensis (282), Sporobolus carolii (14), Eragrostis lacunaria (169), Eriachne mucronata (217), Chloris ventricosa (17), Eragrostis spartinoides (10), Heteropogon contortus (60), Digitaria brownii (171), Eulalia aurea (14), Enneapogon lindeyanus (85), Digitaria ammophila (38), Chloris divaricata (13), Panicum effusum (268), Cymbopogon bombycinus (14), Cymbopogon refractus (7), Schizachyrium fragile (26), Enneapogon virens (329), Triodia pungens (393), Tragus australianus (10), Paraneurachne meulleri (16), Cenchrus ciliaris (106), Perennial forbs: Scleroleana muricata (70), Scleroleana convexula (28), Sida rohlenae (139), Cynodon dactylon (10), Hibiscus burtonii (74), Sida atherophora (115), Senna artemisioides subsp. filifolia (14), Abutilon sp. (38), Phyllanthus sp. (13), Indigofera linifolia (84), Desmodium varians (8), Hybanthus enneaspermus (21), Spermacoce brachystemma (9), Tephrosia leptoclada (7), Wultheria indica (16), Chaemasyce drummondii (33), Calotis xanthosioidea (33), Boerhavia pubescens (88), Alternanthera nana (30), Cheilanthes sieberi subsp. sieberi (13), Peripleura hispidula (17), Rostellularia adscendens (14), Gossypium australe (6), Corchorus aestuans (82), Solanum ellipticum (46), Tricoryne elatoir (13), Zornia muriculata (63), Evolvulus alsinoides subsp. decumdens (209), Annual grasses: Aristida holathera (147), Perotis rara (7), Dactyloctenium radulans (23), Annual forbs: Gomphrena celosioides (6), Portulaca oleracea (12), Portulaca pilosa (41), Oldenlandia mitrasacmoides (45), Heliotropium tanythrix (21), Alternanthera denticulata (20), Oldenlandia corymbosa (26), Trees and shrubs: Canthium oleifolium (33), Acacia melleodora (10), Acacia tenuissima (34), Opuntia stricta (16), Carissa ovata (52), Acacia coriacea subsp. sericophylla (107), Stylosanthes scabra (66), Petalostigma pubescens (15)


Appendix 1
Click to zoom