Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Acacia tortilis (Forssk.) subsp. raddiana (Savi) Brenan as a foundation species: a test from the arid zone of Tunisia

Zouhaier Noumi A B , Lotfi Abdallah A , Blaise Touzard B C and Mohamed Chaieb A
+ Author Affiliations
- Author Affiliations

A Faculté des Sciences, Laboratoire de Biologie et d’Ecophysiologie des végétaux en milieu aride, Université de Sfax, Sfax, Tunisia.

B Laboratoire Ecologie des Communautés, Université Bordeaux 1, UMR INRA 1202 BioGeCo, Avenue des Facultés, 33405 Talence, France.

C Corresponding author. Email: b.touzard@ecologie.u-bordeauxA.fr

The Rangeland Journal 34(1) 17-25 https://doi.org/10.1071/RJ11053
Submitted: 12 July 2010  Accepted: 26 September 2011   Published: 23 February 2012

Abstract

The geographic distribution of Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan in Tunisia, is limited to the Bou-Hedma region (Bled Talah) where the National Park of Bou-Hedma, a UNESCO (1986) biosphere reserve, is located. We have tested the hypothesis that A. tortilis acts as a foundation species as a result of the improvement of soil conditions under its canopy (soil water availability and nutrient enrichment). The herbaceous community (floristic composition, species density, species richness) and soil characteristics (soil nutrients and soil water) were sampled using the quadrat method beneath and between 16 adult trees of A. tortilis with both northwards and southwards (south and north sides) and eight open areas among the trees. Results showed that A. tortilis trees improve soil water availability, the nutrient status of soil (organic matter, total carbon, total nitrogen, extractable phosphorus), and has a positive effect on the understorey vegetation under arid conditions. No significant differences in species richness were observed between the north subhabitats and the south subhabitats.

Additional keywords: exposition, open areas, soil enrichment, soil water availability, tree canopies.


References

Abdallah, F., Noumi, Z., Touzard, B., Ouled Belgacem, A., Neffati, M., and Chaieb, M. (2008). The influence of Acacia tortilis (Forssk.) subsp. raddiana (Savi) and livestock grazing on grass species composition, yield and soil nutrients in arid environments of South Tunisia. Flora 203, 116–125.
The influence of Acacia tortilis (Forssk.) subsp. raddiana (Savi) and livestock grazing on grass species composition, yield and soil nutrients in arid environments of South Tunisia.Crossref | GoogleScholarGoogle Scholar |

ADE4 (2002). ‘Biometry and Evolutionary Biology Laboratory.’ (University of Lyon 1: Lyon, France.)

Aerts, R., Maes, W., November, E., Behailu, M., Poesen, J., Deckers, J., Hermy, M., and Muys, B. (2006). Surface runoff and seed trapping efficiency of shrubs in regenerating semiarid woodland in northern Ethiopia. Catena 65, 61–70.
Surface runoff and seed trapping efficiency of shrubs in regenerating semiarid woodland in northern Ethiopia.Crossref | GoogleScholarGoogle Scholar |

Alstad, G., and Vetaas, O. R. (1994). The influence of Acacia tortilis stands on soil properties in arid north-eastern Sudan. Acta Oecologica 15, 449–460.

Amiotti, N. M., Zolba, P., Sanchez, L. F., and Peinemann, N. (2000). The impact of single trees on properties of loess-derived grassland soils in Argentina. Ecology 81, 3283–3290.
The impact of single trees on properties of loess-derived grassland soils in Argentina.Crossref | GoogleScholarGoogle Scholar |

Amundson, R. G., Kohut, R. J., Laurence, J. A., Fellows, S., and Colavito, L. J. (1993). Moderate water-stress alters carbohydrate content and cold tolerance of red spruce foliage. Environmental and Experimental Botany 33, 383–390.
Moderate water-stress alters carbohydrate content and cold tolerance of red spruce foliage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVagu7k%3D&md5=9a916dbd4b74f771303ae5a264398691CAS |

Anderson, L. J., Brumbaugh, M. S., and Jackson, R. B. (2001). Water and tree understorey-interactions: a natural experiment with oak wilt in savanna ecosystem. Ecology 82, 33–49.

Ashkenazi, S. (1995). ‘Acacia Trees in the Negev and the Arava, Israel: A Review Following Reported Large-scale Mortality.’ Hakeren HaKayemet L’Israel. pp. 121. XVII. Jerusalem. [In Hebrew with English summary].

Barnes, R. D., Filer, D. L., and Milton, S. J. (1996). ‘Acacia karroo: monograph and annotated bibliography.’ Tropical Forestry Papers No. 32. (Oxford Forestry Institute: Oxford.)

Bell, R. H. V. (1982). The effect of soil nutrient availability on community structure in African ecosystems. In: ‘Ecological Studies 42: Ecology of Tropical Savannas’. (Eds B. J. Huntley and B. H. Walker.) pp. 193–216. (Springer: Berlin.)

Belsky, A. J. (1994). Influence of trees on savanna productivity: test of shade, nutrients, and tree grass competition. Ecology 75, 922–932.
Influence of trees on savanna productivity: test of shade, nutrients, and tree grass competition.Crossref | GoogleScholarGoogle Scholar |

Belsky, A. J., Amundson, R. G., Duxburg, J. M., Riha, S. J., Ali, A. R., and Mwonga, S. M. (1989). The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna. Journal of Applied Ecology 26, 1005–1024.
The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna.Crossref | GoogleScholarGoogle Scholar |

Belsky, A. J., Mwonga, S. M., Amundson, R. G., Duxbury, J. M., and Ali, A. R. (1993). Comparative effects of isolated trees on their undercanopy environments in high and low rainfall savannas. Journal of Applied Ecology 30, 143–155.
Comparative effects of isolated trees on their undercanopy environments in high and low rainfall savannas.Crossref | GoogleScholarGoogle Scholar |

Benzécri, J. P. (1973). ‘Data Analyses. Volume II. Correspondence Analysis.’ (Dunod: Paris.)

Bernhard-Reversat, F. (1982). Biogeochemical cycles of nitrogen in a semi-arid savanna. Oikos 38, 321–332.
Biogeochemical cycles of nitrogen in a semi-arid savanna.Crossref | GoogleScholarGoogle Scholar |

Callaway, R. M., and Pugnaire, F. I. (1999). Facilitation in plant communities. In: ‘Handbook of Functional Plant Ecology’. (Eds F. I. Pugnaire and F. Valladares.) pp. 623–648. (Marcel Dekker: New York.)

Callaway, R. M., Nadkarni, N. M., and Mahall, R. E. (1991). Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology 72, 1484–1499.
Facilitation and interference of Quercus douglasii on understory productivity in central California.Crossref | GoogleScholarGoogle Scholar |

Cortina, J., and Maestre, F. T. (2005). Plant effects on soils in drylands. Implications for community dynamics and dryland restoration. In: ‘Tree Species Effects on Soils: Implications for Global Change’. (Eds D. Binkley and O. Menyailo.) pp. 85–118. (NATO Science Series, Kluwer Academic Publishers: Dordrecht.)

Di Castri, F., Goodall, D. W., and Specht, R. L. (1981). ‘Mediterranean-type Shrublands. Ecosystems of the World. Vol. 11.’ (Elsevier: Amsterdam.)

Di Castri, F., Floret, C., Rambal, S., and Roy, J. (1988). Time scales and water stress. In: ‘Proceedings of the 5th International Conference on Mediterranean Ecosystems. MEDECOS 5’. Montpellier. (Eds F. Di Castri, S. Rambal and J. Roy.) pp. 489–495. (International Union of Biological Sciences: Paris.)

Ellison, A. M., Bank, M. S., Clinton, B. D., Colburn, E. A., Elliott, K., Ford, C. R., Foster, D. R., Kloeppe, B. D., Knoepp, J. D., Lovett, G. M., Mohan, J., Orwig, D. A., Rodenhouse, N. L., Sobczak, W. V., Stinson, K. A., Stone, J. K., Swan, C. M., Thompson, J., Von Holle, B., and Webster, J. R. (2005). Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3, 479–486.
Loss of foundation species: consequences for the structure and dynamics of forested ecosystems.Crossref | GoogleScholarGoogle Scholar |

Emberger, L. (1955). A biogeographic classification of climates. Faculty of Sciences, Botanical Laboratory, Montpellier. Revue des travaux de Laboratoire de Botanique et de Zoologie 7, 3–43.

Fotelli, M. N., Radogloui, K. M., and Constantinidou, H. I. A. (2000). Water stress responses of seedlings of four Mediterranean oak species. Tree Physiology 20, 1065–1075.
| 1:STN:280:DC%2BD3M7nsFKmsg%3D%3D&md5=a873305fae6a2dd9fb15f091a96eb204CAS |

Graham, S., Wilson, B. R., Reid, N., and Jones, H. (2004). Scattered paddock trees, litter chemistry, and surface soil properties in pastures of the New England Tablelands, New South Wales. Australian Journal of Soil Research 42, 905–912.
Scattered paddock trees, litter chemistry, and surface soil properties in pastures of the New England Tablelands, New South Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOqsLnE&md5=592a1ced023009891103a31b6b39b49aCAS |

Greuter, W., Burdet, H. M., and Long, G. (1984). ‘Med-Checklist: a Critical Inventory of Vascular Plants of the Circum-Mediterranean Countries.’ Vol. I, 430 p.; Vol. III, 542 p.; & Vol. IV, 586 p. (Conservatoire et Jardin Botaniques, Ville de Genève: Geneva.)

Gueye, M., and Ndoye, I. (2003). The nitrogen-fixing potential of Acacia raddiana compared of those of Acacia senegal, Acacia seyal and Faidherbia albia. In: ‘A Tree in Desert: Acacia raddiana’. (Eds M. Grouzis and E. Le Floc’h.) pp. 201–204. (IRD Editions: Paris.)

Hogberg, P. (1986). Nitrogen-fixation and nutrient relations in savannah woodland trees (Tanzania). Journal of Applied Ecology 23, 675–688.
Nitrogen-fixation and nutrient relations in savannah woodland trees (Tanzania).Crossref | GoogleScholarGoogle Scholar |

Jeddi, K., Cortina, J., and Chaieb, M. (2010). Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in southern Tunisia. Journal of Arid Environments 31, 153–170.

Joffre, R., Vacher, J., De Los Lianos, C., and Long, G. (1988). The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena of Spain. Agroforestry Systems 6, 71–96.

Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems 134, 279–295.
Temperature stress and survival ability of Mediterranean sclerophyllous plants.Crossref | GoogleScholarGoogle Scholar |

Maestre, F. T., Bautista, S., Cortina, J., and Bellot, J. (2001). Potential of using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecological Applications 11, 1641–1655.
Potential of using facilitation by grasses to establish shrubs on a semiarid degraded steppe.Crossref | GoogleScholarGoogle Scholar |

Maestre, F. T., Bautista, S., and Cortina, J. (2003). Positive, negative and net effects in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology 84, 3186–3197.
Positive, negative and net effects in grass-shrub interactions in Mediterranean semiarid grasslands.Crossref | GoogleScholarGoogle Scholar |

Mahamane, L., and Mahamane, S. (2005). Biodiversity of ligneous species in semi-arid zones of southwestern Niger according to anthropogenic and natural factors. Agriculture, Ecosystems & Environment 105, 267–271.
Biodiversity of ligneous species in semi-arid zones of southwestern Niger according to anthropogenic and natural factors.Crossref | GoogleScholarGoogle Scholar |

Moreno, G. (2008). Response of understorey forage to multiple tree effects in Iberian dehesas. Agriculture, Ecosystems & Environment 123, 239–244.
Response of understorey forage to multiple tree effects in Iberian dehesas.Crossref | GoogleScholarGoogle Scholar |

Munzbergova, Z., and Ward, D. (2002). Acacia trees as keystone species in Negev desert ecosystems. Journal of Vegetation Science 13, 227–236.

Nelson, D. W., and Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: ‘Methods of Soil Analysis’. (Ed. A. L. Page.) pp. 539–580. (American Society of Agronomy, Soil Science Society of America: Madison.)

Olsen, S. R., and Sommers, L. E. (1982). Phosphorus. In: ‘Methods of Soil Analysis’. (Ed. A. L. Page.) pp. 403–430. (American Society of Agronomy, Soil Science Society of America: Madison.)

Osem, Y., Perevolotsky, A., and Kigel, J. (2007). Interactive effects of grazing and shrubs on the annual plant community in semi-arid Mediterranean shrublands Journal of Vegetation Science 18, 869–878.
Interactive effects of grazing and shrubs on the annual plant community in semi-arid Mediterranean shrublandsCrossref | GoogleScholarGoogle Scholar |

Palm, C. A. (1995). Contribution of agroforestry trees to nutrient requirements of intercropped plants. Agroforestry Systems 30, 105–124.
Contribution of agroforestry trees to nutrient requirements of intercropped plants.Crossref | GoogleScholarGoogle Scholar |

Prider, J. N., and Facelli, J. M. (2004). Interactive effects of drought and shade three arid zone chenopod shrubs with contrasting distributions in relation to tree canopies. Functional Ecology 18, 67–76.
Interactive effects of drought and shade three arid zone chenopod shrubs with contrasting distributions in relation to tree canopies.Crossref | GoogleScholarGoogle Scholar |

Priha, O., Lehto, T., and Smolander, A. (1999). Mycorrhizae and C and N transformations in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings. Plant and Soil 206, 191–204.
Mycorrhizae and C and N transformations in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings.Crossref | GoogleScholarGoogle Scholar |

Pugnaire, F., Armas, C., and Valladares, F. (2004). Soil as a mediator in plant-plant interactions in a semi-arid community. Journal of Vegetation Science 15, 85–92.
Soil as a mediator in plant-plant interactions in a semi-arid community.Crossref | GoogleScholarGoogle Scholar |

Rafiqul-Hoque, A. T. M., Ahmed, R., Uddin, M. B., and Hossain, M. K. (2003). Allelopathic effect of different concentration of water extracts of Acacia auriculiformis leaf on some initial growth parameters of five common agricultural crops. Pakistan Journal of Agronomy 2, 92–100.

Ross, J. H. (1981). An analysis of the African Acacia species: their distribution, possible origins and relationships. Bothalia 13, 389–413.

Scholes, R. J., and Archer, S. R. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics 28, 517–544.
Tree-grass interactions in savannas.Crossref | GoogleScholarGoogle Scholar |

Shaukat, S. S., Munir, N., and Siddiqui, I. A. (2003). Allelopathic responses of Conyza canadensis (L.) Cronquist: a cosmopolitan weed. Asian Journal of Plant Science 2, 1034–1039.
Allelopathic responses of Conyza canadensis (L.) Cronquist: a cosmopolitan weed.Crossref | GoogleScholarGoogle Scholar |

Thapa, R. (2003). Agroforestry can reverse land degradation in Nepal. Appropriate Technology 30, 40–41.

Thomas, G. F. (2001). Man-made forestation in Uruguay: study of changed landscape. Journal of Forecasting 99, 35–39.

Tiedemann, A. R., and Klemmedson, J. O. (1973). Effects of mesquite on physical and chemical properties of the soil. Journal of Range Management 26, 27–29.
Effects of mesquite on physical and chemical properties of the soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtV2ksbg%3D&md5=233691805f270496f25977c7e95a4f54CAS |

Tietema, A., Warmerdam, B., Lenting, E., and Riemer, L. (1992). Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: moisture and pH. Plant and Soil 147, 69–78.
Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: moisture and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXht1emu70%3D&md5=cff2579272a8005a4088d66fc4b537b3CAS |

Treydte, A. C., Looringh van Beeck, F., Ludwig, F., and Heitkonig, I. M. A. (2008). Improved beneath-crown grass quality in South African savannas varying locally and over season. Journal of Vegetation Science 19, 663–670.
Improved beneath-crown grass quality in South African savannas varying locally and over season.Crossref | GoogleScholarGoogle Scholar |

Van Kooten, C., Shaikh, S. L., and Suchanek, P. (2002). Mitigating climate change by planting trees: the transaction costs trap. Land Economics 78, 559–572.
Mitigating climate change by planting trees: the transaction costs trap.Crossref | GoogleScholarGoogle Scholar |

Vetaas, O. R. (1992). Micro-site effects of trees and shrubs in dry season savanna. Journal of Vegetation Science 3, 337–344.
Micro-site effects of trees and shrubs in dry season savanna.Crossref | GoogleScholarGoogle Scholar |

Whitford, W. G., Reynolds, J. F., and Cunningham, G. L. (1987). How desertification affects nitrogen limitation of primary production on Chihuahuan desert watersheds. In: ‘General Technical Report RM-150. Proceedings of the Symposium on Strategies for Classification and Management of Native Vegetation for Food Production in Arid Zones’. (Eds E. F. Aldon, C. E. Gonzales-Vicente and W. Moir.) pp. 143–153. (USDA Forest Service: Tucson, AZ.)