CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Zoology   
Australian Journal of Zoology
Journal Banner
  Evolutionary, Molecular and Comparative Zoology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Author Instructions
Submit Article
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 58(3)

Urinary corticosterone metabolite responses to capture, and annual patterns of urinary corticosterone in wild and captive endangered Fijian ground frogs (Platymantis vitiana)

Edward Narayan A E, Frank Molinia B, Ketan Christi A, Craig Morley C, John Cockrem D

A Division of Biological Sciences, University of the South Pacific, Private Mail Bag, Suva, Fiji.
B Landcare Research, Private Bag 92170, Auckland 1142, New Zealand.
C Department of Conservation, Kauri Coast Office, 150 Colville Road, Dargaville, New Zealand.
D Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
E Corresponding author. Email: edward_nryn@yahoo.com
PDF (270 KB) $25
 Export Citation


This study was based on the development of a non-invasive glucocorticoid enzyme-immunoassay for the assessment of stress in wild and captive endangered Fijian ground frogs (Platymantis vitiana). Enzyme-immunoassays were developed and validated for the first time to non-invasively measure both cortisol and corticosterone metabolites in frog urine. Frog urine showed parallel displacement with corticosterone but not cortisol standards, therefore corticosterone enzyme immunoassays were used to examine stress in wild and captive frogs. Urinary corticosterone metabolite concentrations increased in frog urine (n = 4) at 6 h, 1 day and 2 days after injection with adrenocorticotropic hormone (0.44 μg g–1 bodyweight), indicating that the corticosterone enzyme-immunoassay could detect changes in circulating corticosterone in frogs. Urinary concentrations of corticosterone were measured in wild frogs (n = 18) after capture in the field. The first measurement beyond the initial sample was at 2–3 h. Mean urinary corticosterone concentrations rose after the initial sample and were significantly elevated in samples collected 3–4 h after capture. This is the first demonstration of a urinary corticosterone response to capture in amphibians. Urinary corticosterone metabolite concentrations for all months combined were lower in captive males than in wild males, and differed between vitellogenic, non-vitellogenic and captive females. Concentrations did not differ between captive and wild females. In conclusion, urinary corticosterone enzyme immunoassays can be used in frogs for assessing stress responses to capture and natural stress profiles of both captive and wild populations.

Keywords: adrenocorticotropic hormone, capture, stress, urine.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015