CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Zoology   
Australian Journal of Zoology
Journal Banner
  Evolutionary, Molecular and Comparative Zoology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Author Instructions
Submit Article
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn


Article << Previous     |     Next >>   Contents Vol 58(3)

Grazing kangaroos act as local recyclers of energy on semiarid floodplains

Jordan Iles A C, Jeff Kelleway A, Tsuyoshi Kobayashi A, Debashish Mazumder B, Lisa Knowles A, David Priddel A, Neil Saintilan A

A NSW Department of Environment, Climate Change and Water, PO Box A290, Sydney South, NSW 1232, Australia.
B Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia.
C Corresponding author. Email: jordan.iles@environment.nsw.gov.au
PDF (168 KB) $25
 Export Citation


On Australian semiarid floodplains, large herbivores such as kangaroos have a role in the cycling of energy (carbon) through the mechanism of feeding and defaecation of vegetative material. The degree to which kangaroos are vectors of energy within this system is not fully understood. This study describes the stable carbon isotope signature of floodplain plants and kangaroo scats at two close study sites. Kangaroos were found to deposit scats that mirrored the forage composition at each particular feeding site. Scats were 3.94‰ higher in δ13C values at the site where C4 grasses were available, indicating that this grass contributed ~25–30% of the diet of these kangaroos. The difference in diet due to the relative availability of C3 and C4 forage, detectable in the carbon stable isotope signature of scats, is used to demonstrate that kangaroos are recycling and redistributing energy locally, rather than transporting it more broadly across the floodplain.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015