Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

IDENTIFICATION AND INTERPRETATION OF LEAKING HYDROCARBONS USING SEISMIC DATA:A COMPARATIVE MONTAGE OF EXAMPLES FROM THE MAJOR FIELDS IN AUSTRALIA'S NORTHWEST SHELF AND GIPPSLAND BASIN

R. Cowley and G.W. O'Brien

The APPEA Journal 40(1) 119 - 150
Published: 2000

Abstract

An extensive volume of 3D seismic data over a number of oil and gas fields in Australia's North West Shelf and Gippsland Basin has been examined for evidence of the effects of hydrocarbon migration and/or leakage. For comparative purposes, 2D and 3D data have also been studied over a number of adjacent traps, including dry traps and partially to completely breached accumulations. Fields and traps investigated include Bayu-Undan, Jabiru, Skua, Swift and Tahbilk in the Bonaparte Basin, Cornea in the Browse Basin, North Rankin, Chinook, Macedon, Enfield and Zeewulf in the Carnarvon Basin, and Kingfish in the Gippsland Basin. The principal goal of the study is to provide representative case studies from known fields so that, in undrilled regions, the exploration uncertainties associated with the issues of hydrocarbon charge and trap integrity might be reduced.

Direct indicators of hydrocarbon migration and/or leakage are relatively rare throughout the basins studied, though the discoveries themselves characteristically show seismic anomalies attributable to hydrocarbon leakage. The nature and intensity of these hydrocarbon-related seismic effects do, however, vary dramatically between the fields. Over traps such as Skua, Swift, Tahbilk and Macedon, they are intense, whereas over others, for example Chinook and North Rankin, they are quite subtle. Hydrocarbon-related diagenetic zones (HRDZs), which had been identified previously above the reservoir zones of leaky traps within the Bonaparte Basin, have also been recognised within the Browse, Carnarvon, Otway and Gippsland Basins. HRDZs are the most common leakage indicators found and are identified easily via a combination of high seismic amplitudes through the affected zone, time pull-up and degraded stack response of underlying reflectors. In some cases (the Skua and Macedon Fields), the HRDZs actually define the extent of the accumulations at depth.

Anomalous, subtle to strong, seismic amplitude anomalies are associated with the majority of the major fields within the Carnarvon Basin. The strength and location of the anomalies are related to a complex interplay between trap type (in particular four-way dip-closed versus fault dependent), top seal capacity, fault seal integrity, and charge history. In some areas within the Carnarvon, Browse and Bonaparte Basins, shallow amplitude anomalies can be related directly to gas chimneys emanating from the reservoir zone itself. In other instances, the continuous migration of gas from the reservoir has produced an assortment of pockmarks, mounds and amplitude anomalies on the present day sea floor, which all provide evidence of hydrocarbon seepage. In the Browse Basin, strong evidence has been found that many of the modern carbonate banks and reefs in the region were initially located over hydrocarbon seeps on the palaeo-seafloor.

The examples and processes presented demonstrate that the analysis of hydrocarbon leakage indicators on seismic data can help to better understand exploration risk and locate subtle hydrocarbon accumulations. In mature exploration provinces, this methodology may lead to the identification of subtle accumulations previously left undetected by more conventional methods. In frontier regions, it can help to identify the presence of a viable petroleum system, typically the principal exploration uncertainty in undrilled regions.

https://doi.org/10.1071/AJ99008

© CSIRO 2000

Committee on Publication Ethics


Export Citation Cited By (24)

View Dimensions