Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

INTEGRATED HYDROCARBON SEAL EVALUATION IN THE PENOLATROUGH, OTWAY BASIN

R.M. Jones, P. Boult, R.R. Hillis, S.D. Mildren and J. Kaldi

The APPEA Journal 40(1) 194 - 212
Published: 2000

Abstract

Seals are one of the main components of the petroleum system, yet their evaluation has received surprisingly little attention in terms of integrated risk assessment. This paper emphasises the need for an integrated multi-disciplinary approach for robust cap and fault seal evaluation so to minimise seal risk. The region of study is the Penola Trough, Otway Basin, where recent improvements in seismic quality, stratigraphic modelling and additional well control have greatly enhanced regional prospectivity.

The Laira Formation has the lowest cap seal risk of Penola Trough strata based on empirical data. The Eumeralla Formation has a similar gamma ray log signature to the Laira Formation yet contains a higher frequency of sandy, relatively high permeability horizons. These horizons increase the likelihood of fault juxtaposition and the development of leaky windows that allow cross fault communication.

Faults in the Penola Trough display fractal characteristics from seismic to core scale. A prediction of regional fault extension and deformation intensity below seismic resolution is viable since fault systems appear to be systematic. Extrapolation of fault populations to the millimetre scale shows good agreement with fault density recorded in core from a fault damage zone. Deformation intensities close to seismically resolvable faults are indicative of inner damage zone geometry where faults form linked cluster arrays. Microstructural fault analysis indicates the dominant fault processes in the Upper Crayfish Group are grain boundary sliding and cataclasis with gouge quartz cementation. Petrophysical analysis indicates these faults are able to support gas columns of up to 102 m.

The relative probability of seal failure due to the development of effective structural permeability within the in-situ stress field indicates that planes at the greatest risk of failure are steeply dipping (>60°) and strike between 110°N and 200°N. Open fractures crosscutting pre-existing faults have been identified through microstructural examination and these may provide a mechanism for trap leakage and tertiary hydrocarbon migration. An integrated technique for mapping the relative risk of seal breach due to the development of effective structural permeability at the seismic scale is also presented.

https://doi.org/10.1071/AJ99011

© CSIRO 2000

Committee on Publication Ethics


Export Citation Cited By (6)

View Dimensions