Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

First karyotype, DNA C-value and AT/GC base composition of macaw palm (Acrocomia aculeata, Arecaceae) – a promising plant for biodiesel production

Isabella Santiago Abreu A , Carlos Roberto Carvalho A C , Guilherme Mendes Almeida Carvalho A and Sérgio Yoshimitsu Motoike B
+ Author Affiliations
- Author Affiliations

A Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa – MG, Brazil.

B Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-000, Viçosa – MG, Brazil.

C Corresponding author. Email: ccarvalh@ufv.br

Australian Journal of Botany 59(2) 149-155 https://doi.org/10.1071/BT10245
Submitted: 17 September 2010  Accepted: 9 February 2011   Published: 28 March 2011

Abstract

The oleaginous species Acrocomia aculeata produces high-quality oil and is considered a potential plant for sustainable production of food and biodiesel. In spite of its economical, social and environmental importance, few data concerning the genome size and chromosomal characterisation of this crop have been reported. In order to contribute to basic genetic knowledge on A. aculeata, this work aimed to assemble the first karyogram and to determine genome size and base composition of this species. Concerning the cytogenetic approach, we developed a protocol based on root tips treatment with an anti-mitotic agent, followed by enzymatic maceration and slide preparation by the air-drying technique. This method provided well resolved metaphasic chromosomes, which are important for an accurate and informative cytogenetical characterisation. A chromosome number of 2n = 30 was observed. Content of 2C DNA and base composition were estimated by flow cytometry of G0/G1 nuclei stained with propidium iodide and 4′,6-diamidino-2-phenylindole, respectively. The mean 2C-value and base composition corresponded to 2C = 5.81 pg and AT = 58.3%. These new data support basic genetic knowledge on A. aculeata, relevant for its conservation, diversity studies and consequent development of breeding programs, which may foment the biofuel production in the world.


References

Abreu IS, Carvalho CR, Clarindo WR (2008) Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Reports 27, 1227–1233.
Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslWhtrw%3D&md5=465910f1fbaee419d75209fa08431b74CAS | 18347800PubMed |

Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47, 1–7.
Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2htQ%3D%3D&md5=766bae982131ffa5cd15ffe797c4355eCAS | 11774343PubMed |

Bora PS, Rocha RVM (2004) Macaíba palm: fatty and amino acids composition of fruits. Ciencia y Tecnología Alimentaria 4, 158–162.

Carvalho CR, Saraiva LS (1993) A new heterochromatin banding pattern revealed by modified HKG banding technique in maize chromosomes. Heredity 70, 515–519.
A new heterochromatin banding pattern revealed by modified HKG banding technique in maize chromosomes.Crossref | GoogleScholarGoogle Scholar |

Carvalho CR, Saraiva LS (1997) High-resolution HKG-banding in maize mitotic chromosomes. Journal of Plant Research 110, 417–420.
High-resolution HKG-banding in maize mitotic chromosomes.Crossref | GoogleScholarGoogle Scholar |

Carvalho CR, Clarindo WR, Almeida PM (2007) Plant cytogenetics: still looking for the perfect mitotic chromosomes. The Nucleus 50, 453–463.

Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Science 174, 613–617.
Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslynsb4%3D&md5=5ca919e8cb253ed14c3cba6786aaf0bfCAS |

Clarindo WR, Carvalho CR (2006) A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora. Cytologia 71, 243–249.
A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora.Crossref | GoogleScholarGoogle Scholar |

Clarindo WR, Carvalho CR (2008) First Coffea arabica karyogram showing that this species is a true allotetraploid. Plant Systematics and Evolution 274, 237–241.
First Coffea arabica karyogram showing that this species is a true allotetraploid.Crossref | GoogleScholarGoogle Scholar |

Clarindo WR, Carvalho CR (2009) Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content. Plant Cell Reports 28, 73–81.
Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVylsr%2FO&md5=6a779491c931986caf728d9ba7165419CAS | 18841372PubMed |

Clarindo WR, Carvalho CR, Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Systematics and Evolution 265, 101–107.
Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms.Crossref | GoogleScholarGoogle Scholar |

Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95, 99–110.
Plant DNA flow cytometry and estimation of nuclear genome size.Crossref | GoogleScholarGoogle Scholar | 15596459PubMed |

Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85, 625–631.
Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants.Crossref | GoogleScholarGoogle Scholar |

Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA and genome size of trout and human. Cytometry 51, 127–128.

Fortes ICP, Baugh PJ (1999) Study of analytical on-line pyrolysis of oils from macauba fruit (Acrocomia sclerocarpa M) via GC/MS. Journal of the Brazilian Chemical Society 10, 469–477.
Study of analytical on-line pyrolysis of oils from macauba fruit (Acrocomia sclerocarpa M) via GC/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslOlug%3D%3D&md5=1600d126ecfe098f303e5e7f669ff00aCAS |

de Freitas DV, Carvalho CR, do Naciemento Filho FJ, Astolfi-Filho S (2007) Karyotype with 210 chromosomes in guaraná (Paullinia cupana ‘Sorbilis’). Journal of Plant Research 120, 399–404.
Karyotype with 210 chromosomes in guaraná (Paullinia cupana ‘Sorbilis’).Crossref | GoogleScholarGoogle Scholar | 17387431PubMed |

Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051.
Rapid flow cytometric analysis of the cell cycle in intact plant tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktF2ju78%3D&md5=ef0e234b7bfeb2a6f84122aee6999b93CAS | 17754551PubMed |

Godelle B, Cartier D, Marie D, Brown CS, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14, 618–626.
Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtFyntb4%3D&md5=0ff0e18b00a5d22abc16aa802df04c11CAS | 8404368PubMed |

Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82, 27–35.
Intraspecific variation in genome size: a critical reassessment.Crossref | GoogleScholarGoogle Scholar |

Guerra MS (1986) Reviewing the chromosome nomenclature of Levan et al. Revista Brasileira de Genetica 9, 741–743.

Henderson A, Galeano G, Bernal R (1995) ‘Field guide to the palms of the Americas.’ (Princeton University Press: New Jersey)

Hiane PA, Baldasso PA, Marangoni S, Macedo MLR (2006) Chemical and nutritional evaluation of kernels of bocaiúva, Acrocomia aculeata (Jacq.) Lodd. Ciência e Tecnologia de Alimentos 26, 683–689.

Karsburg IV, Carvalho CR, Clarindo WR (2009) Identification of chromosomal deficiency by flow cytometry and cytogenetics in mutant tomato (Solanum lycopersicum, Solanaceae) plants. Australian Journal of Botany 57, 444–449.
Identification of chromosomal deficiency by flow cytometry and cytogenetics in mutant tomato (Solanum lycopersicum, Solanaceae) plants.Crossref | GoogleScholarGoogle Scholar |

Levan A, Fredga A, Sanderberg AA (1964) Nomenclature for centromeric position in chromosome. Hereditas 52, 201–220.
Nomenclature for centromeric position in chromosome.Crossref | GoogleScholarGoogle Scholar |

Lorenzi GMAC (2006) Acrocomia aculeata (Jacq.) Lodd. ex Mart. – Arecaceae: bases para o extrativismo sustentável. PhD Thesis, Federal University of Paraná, Brazil.

Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Annals of Botany 98, 679–689.
Comparison of four nuclear isolation buffers for plant DNA flow cytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVequrbE&md5=55b952ef8edd3eb9e5cb4c52935d5fc6CAS | 16820407PubMed |

Meister A (2005) Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana. Journal of Theoretical Biology 232, 93–97.
Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKkurg%3D&md5=661e167b692916079ed3b1597b229327CAS | 15498596PubMed |

Meister A, Barow M (2007) DNA base composition of plant genomes. In ‘Flow cytometry with plant cells’. (Eds J Doležel, J Greilhuber, J Suda) pp. 177–215. (Wiley-VCH: Weinheim, Germany)

Motoike SY, Kuki KN (2009) The potential of macaw palm (Acrocomia aculeata) as source of biodiesel in Brazil. International Review of Chemical Engineering 1, 632–635.

Moura EF, Ventrella MC, Motoike SY, de Sá AQ, Carvalho M, Manfio CE (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell, Tissue and Organ Culture 95, 175–184.
Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius).Crossref | GoogleScholarGoogle Scholar |

Moura EF, Motoike SY, Ventrella MC, de Sá AQ, Carvalho M (2009) Somatic embryogenesis in macaw palm (Acrocomia aculeata) from zygotic embryos. Scientia Horticulturae 119, 447–454.
Somatic embryogenesis in macaw palm (Acrocomia aculeata) from zygotic embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFekur0%3D&md5=da0c0dc14425d9a52e21df530cd76029CAS |

Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Annals of Botany 95, 119–125.
When does intraspecific C-value variation become taxonomically significant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kiur8%3D&md5=a04bdce2c7e3d9c63d2521fcf46bf25cCAS | 15596461PubMed |

Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Science 47, 2228–2237.
Biofuels in Brazil: an overview.Crossref | GoogleScholarGoogle Scholar |

Ohmido N, Akiyama Y, Fukui K (1998) Physical mapping of unique nucleotide sequences in identified rice chromosomes. Plant Molecular Biology 38, 1043–1052.
Physical mapping of unique nucleotide sequences in identified rice chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVeksw%3D%3D&md5=aa756f94f18ddbb20b3f03d17f1aeb36CAS | 9869410PubMed |

Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In ‘Methods in cell biology. Vol. 33’. (Eds Z Darzynkiewiez, HA Crissman, JP Robinson) pp. 105–110. (Academic Press: San Diego, CA)

Röser M (1999) Chromosome structures and karyotype rearrangement in palms (Palmae). In ‘Evolution, variation, and classification of palms. Vol. 83’. (Eds A Henderson, F Borchsenius) pp. 61–71. (The New York Botanical Garden Press: New York)

Röser M, Johnson MAT, Hanson L (1997) Nuclear DNA amounts in palms (Arecaceae). Botanica Acta 110, 79–89.

Scariot A, Lleras E (1995) Flowering and fruiting phenologies of the palm Acrocomia aculeata: patterns and consequences. Biotropica 27, 168–173.
Flowering and fruiting phenologies of the palm Acrocomia aculeata: patterns and consequences.Crossref | GoogleScholarGoogle Scholar |

Shapiro HM (2003) ‘Practical flow cytometry.’ (Wiley-Liss: New Jersey)

Sharma AK, Sharma A (1999) ‘Plant chromosomes: analysis, manipulation and engineering.’ (Harwood Academic Publishers: Amsterdam)

Singh RJ (1993) ‘Plant cytogenetics.’ (CRC Press: Boca Raton, FL)

Tickel J (2000) ‘From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel.’ (Tickel Energy Consulting: Tallahassee, FL)