Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Seasonal differences of urban organic aerosol composition – an ultra-high resolution mass spectrometry study

Angela G. Rincón A , Ana I. Calvo A C , Mathias Dietzel B and Markus Kalberer A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

B Institute of Nano- and Microfluidics, Center of Smart Interfaces, Technical University Darmstadt, D-64287 Darmstadt, Germany.

C Present address: Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, PT-3810-193 Aveiro, Portugal.

D Corresponding author: Email: markus.kalberer@atm.ch.cam.ac.uk

Environmental Chemistry 9(3) 298-319 https://doi.org/10.1071/EN12016
Submitted: 24 January 2012  Accepted: 25 May 2012   Published: 29 June 2012

Environmental context. Understanding the molecular composition and chemical transformations of organic aerosols during atmospheric aging is a major challenge in atmospheric chemistry. Ultra-high resolution mass spectrometry can provide detailed information on the molecular composition of organic aerosols. Aerosol samples collected in summer and winter at an urban site are characterised and compared in detail with respect to the elemental composition of their components, especially nitrogen- and sulfur-containing compounds, and are discussed with respect to atmospheric formation processes.

Abstract. Organic compounds are major constituents of atmospheric aerosol particles. The understanding of their chemical composition, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood, mainly due to its highly complex chemical composition of several thousand compounds. There is currently no analytical technique available covering a wide enough chemical space to characterise this large number of organic compounds. In recent years ultra-high resolution mass spectrometry has been increasingly used to explore the chemical complexity in organic aerosols from laboratory and ambient samples. In the present study ambient particles <1 µm were collected at an urban site in Cambridge, UK, from August to December 2009. The water-soluble organic fraction of the filters was separated from inorganic ions following a procedure developed for humic-like substance isolation. Ultra-high resolution mass spectrometry analyses were performed in negative and positive polarity. Data in the mass range of m/z 50–350 were analysed for their elemental composition. Summer samples generally contained more components than winter samples. The large number of compounds was subdivided into groups according to their elemental composition. Up to 80 % of the peaks contain nitrogen and sulfur functional groups and only ~20 % of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidised nitrogen and sulfur groups increases compared with winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidised nitrogen compounds a large number of amines was identified.


References

[1]  S. Decesari, M. C. Facchini, S. Fuzzi, E. Tagliavini, Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. J. Geophys. Res. – Atmos. 2000, 105, 1481.
Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach.CrossRef | 1:CAS:528:DC%2BD3cXhtlKgtrg%3D&md5=57b2502fbef023822e41d0d9c5d35812CAS |

[2]  G. Kiss, B. Varga, I. Galambos, I. Ganszky, Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J. Geophys. Res. – Atmos. 2002, 107, 8339.
Characterization of water-soluble organic matter isolated from atmospheric fine aerosol.CrossRef |

[3]  J. L. Jaffrezo, G. Aymoz, C. Delaval, J. Cozic, Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps. Atmos. Chem. Phys. 2005, 5, 2809.
Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps.CrossRef | 1:CAS:528:DC%2BD2MXht1KgsrzM&md5=101a114f78269a2c72e6b3ec81f1b5f6CAS |

[4]  T. Reemtsma, A. These, P. Venkatachari, X. Y. Xia, P. K. Hopke, A. Springer, M. Linscheid, Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2006, 78, 8299.
Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD28Xht1Sjtb7I&md5=5a1eabc2bc82904c1740c9d3e7e20768CAS |

[5]  A. Reinhardt, C. Emmenegger, B. Gerrits, C. Panse, J. Dommen, U. Baltensperger, R. Zenobi, M. Kalberer, Ultrahigh mass resolution and accurate mass measurements as a tool to characterize oligomers in secondary organic aerosols. Anal. Chem. 2007, 79, 4074.
Ultrahigh mass resolution and accurate mass measurements as a tool to characterize oligomers in secondary organic aerosols.CrossRef | 1:CAS:528:DC%2BD2sXjvFKgtrg%3D&md5=1f0e0e2302019639a9a7539163b8022dCAS |

[6]  S. A. Nizkorodov, J. Laskin, A. Laskin, Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys. Chem. Chem. Phys. 2011, 13, 3612.
Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXitVSksrc%3D&md5=1033512977254de08e7e70c1d945c072CAS |

[7]  J. S. Smith, A. Laskin, J. Laskin, Molecular characterization of biomass burning aerosols using high-resolution mass spectrometry. Anal. Chem. 2009, 81, 1512.
Molecular characterization of biomass burning aerosols using high-resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1MXjsQ%3D%3D&md5=0b9686d79a77b7108e9e83aa4d2a2b51CAS |

[8]  A. Laskin, J. S. Smith, J. Laskin, Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ. Sci. Technol. 2009, 43, 3764.
Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1MXkslCrtLw%3D&md5=6dc7e51bcdeaa711686c9bdfc3dc4790CAS |

[9]  A. L. Chang-Graham, L. T. M. Profeta, T. J. Johnson, R. J. Yokelson, A. Laskin, J. Laskin, Case study of water-soluble metal containing organic constituents of biomass burning aerosol. Environ. Sci. Technol. 2011, 45, 1257.
Case study of water-soluble metal containing organic constituents of biomass burning aerosol.CrossRef | 1:CAS:528:DC%2BC3MXjsVeksA%3D%3D&md5=bb075be75fc1bf8f98997ee12c9e8708CAS |

[10]  P. J. Roach, J. Laskin, A. Laskin, Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry. Anal. Chem. 2010, 82, 7979.
Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3cXpsVKks7c%3D&md5=6eb36237142eff4cef80fe8867d43561CAS |

[11]  J. Laskin, A. Laskin, P. J. Roach, G. W. Slysz, G. A. Anderson, S. A. Nizkorodov, D. L. Bones, L. Q. Nguyen, High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 2010, 82, 2048.
High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols.CrossRef | 1:CAS:528:DC%2BC3cXhvVKjurg%3D&md5=e23993c21f6afd6cffcfdd756945991eCAS |

[12]  P. Schmitt-Kopplin, A. Gelencsér, E. Dabek-Zlotorzynska, G. Kiss, N. Hertkorn, M. Harir, Y. Hong, I. Gebefugi, Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. Anal. Chem. 2010, 82, 8017.
Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.CrossRef | 1:CAS:528:DC%2BC3cXht1WmtrrF&md5=613f7fbe488a40ff63ba16a80ffad23fCAS |

[13]  Y. Gómez-González, J. D. Surratt, F. Cuyckens, R. Szmigielski, R. Vermeylen, M. Jaoui, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, F. Blockhuys, C. Van Alsenoy, W. Maenhaut, M. Claeys, Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–) electrospray ionization mass spectrometry. J. Mass Spectrom. 2008, 43, 371.
Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–) electrospray ionization mass spectrometry.CrossRef |

[14]  K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=b23507f2b8bca3c1b667f4d129b43782CAS |

[15]  L. R. Mazzoleni, B. M. Ehrmann, X. H. Shen, A. G. Marshall, J. L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=f2df57988217a3fa1940176ccaa4f8dfCAS |

[16]  B. Varga, G. Kiss, I. Ganszky, A. Gelencsér, Z. Krivacsy, Isolation of water-soluble organic matter from atmospheric aerosol. Talanta 2001, 55, 561.
Isolation of water-soluble organic matter from atmospheric aerosol.CrossRef | 1:CAS:528:DC%2BD3MXmsFSiu7Y%3D&md5=1bd55dd89ac43a4b1d3df5f1fe6365dcCAS |

[17]  P. Lin, X. F. Huang, L. Y. He, J. Z. Yu, Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. J. Aerosol Sci. 2010, 41, 74.
Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China.CrossRef | 1:CAS:528:DC%2BC3cXnt1entg%3D%3D&md5=f150fb086095aba842bc387b8adf2406CAS |

[18]  A. G. Rincón, A. I. Calvo, M. Dietzer, M. Kalberer, Analysis of water soluble organic fraction in atmospheric aerosol collected in Cambridge: seasonal comparison, in 10th International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), Abstract Book, 26–29 June 2011, Vienna, Austria, 2011 pp. 2–4 (Vienna University of Technology: Vienna, Austria).

[19]  C. A. Hughey, C. L. Hendrickson, R. P. Rodgers, A. G. Marshall, K. N. Qian, Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676.
Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra.CrossRef | 1:CAS:528:DC%2BD3MXmtlWisbo%3D&md5=2d986abc66bd3ce506269b7f0b368dfeCAS |

[20]  B. P. Koch, T. Dittmar, M. Witt, G. Kattner, Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem. 2007, 79, 1758.
Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter.CrossRef | 1:CAS:528:DC%2BD2sXjtVahtg%3D%3D&md5=338d987b3e5f278a75167df620aeced7CAS |

[21]  T. Kind, O. Fiehn, Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 2007, 8, 105.
Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry.CrossRef |

[22]  N. Hertkorn, M. Frommberger, M. Witt, B. P. Koch, P. Schmitt-Kopplin, E. M. Perdue, Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 2008, 80, 8908.
Natural organic matter and the event horizon of mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhtlSnurrO&md5=d38e1ed014a353793b0d12527ee51b87CAS |

[23]  E. V. Kunenkov, A. S. Kononikhin, I. V. Perminova, N. Hertkorn, A. Gaspar, P. Schmitt-Kopplin, I. A. Popov, A. V. Garmash, E. N. Nikolaev, Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization fourier transform ion cyclotron mass spectrometry data of natural organic matter. Anal. Chem. 2009, 81, 10106.
Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization fourier transform ion cyclotron mass spectrometry data of natural organic matter.CrossRef | 1:CAS:528:DC%2BD1MXhtl2qu7bF&md5=f0360cff8fa77e288adde03914a12063CAS |

[24]  E. B. Kujawinski, M. D. Behn, Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Anal. Chem. 2006, 78, 4363.
Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter.CrossRef | 1:CAS:528:DC%2BD28XltVCgtrY%3D&md5=e94d6e11b5609ef750773466f5953cf4CAS |

[25]  A. S. Wozniak, J. E. Bauer, R. L. Sleighter, R. M. Dickhut, P. G. Hatcher, Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 2008, 8, 5099.
Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhtlCntbbF&md5=b7c276c2bc6dfaf81e28aa390a128fd4CAS |

[26]  P. J. Gallimore, P. Achakulwisut, F. D. Pope, J. F. Davies, D. R. Spring, M. Kalberer, Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol. Atmos. Chem. Phys. 2011, 11, 12181.
Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol.CrossRef | 1:CAS:528:DC%2BC38XitVKlsb8%3D&md5=9c99fedcfde798d72e3840e66bd4c6ceCAS |

[27]  J. D. Surratt, Y. Gómez-González, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
Organosulfate formation in biogenic secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=8ed1709bc00dac5ed4673e4b498bad19CAS |

[28]  A. G. Rincón, M. I. Guzman, M. R. Hoffmann, A. J. Colussi, Optical absorptivity versus molecular composition of model organic aerosol matter. J. Phys. Chem. A 2009, 113, 10512.
Optical absorptivity versus molecular composition of model organic aerosol matter.CrossRef |

[29]  A. G. Rincón, M. I. Guzman, M. R. Hoffmann, A. J. Colussi, Characterization of polyfunctional oligomers from pyruvic acid photolysis in water. Eos Trans. AGU 2008, 89, A11D-0174.[Abstract]

[30]  X. L. Ge, A. S. Wexler, S. L. Clegg, Atmospheric amines – Part I. A review. Atmos. Environ. 2011, 45, 524.
Atmospheric amines – Part I. A review.CrossRef | 1:CAS:528:DC%2BC3MXovVGktg%3D%3D&md5=888536eedd7314339eabbbb3179e07f7CAS |

[31]  M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303, 1659.
Identification of polymers as major components of atmospheric organic aerosols.CrossRef | 1:CAS:528:DC%2BD2cXhvFCnsbc%3D&md5=117f5dbeee5fba9687c73364eb028f86CAS |

[32]  T. B. Nguyen, A. P. Bateman, D. L. Bones, S. A. Nizkorodov, J. Laskin, A. Laskin, High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. Atmos. Environ. 2010, 44, 1032.
High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene.CrossRef | 1:CAS:528:DC%2BC3cXhs1Srsrk%3D&md5=dd54e909a0a5e347f265f763b6dae43cCAS |

[33]  K. F. Ho, S. C. Lee, J. J. Cao, K. Kawamura, T. Watanabe, Y. Cheng, J. C. Chow, Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 2006, 40, 3030.
Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong.CrossRef | 1:CAS:528:DC%2BD28XktVajsrs%3D&md5=4b7d5661d024e9f280b4f93bf988f710CAS |

[34]  K. F. Ho, S. C. Lee, S. S. H. Ho, K. Kawamura, E. Tachibana, Y. Cheng, T. Zhu, Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). J. Geophys. Res. – Atmos. 2010, 115, D19312.
Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006).CrossRef |

[35]  Z. Kitanovski, I. Grgic, M. Veber, Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4417.
Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXotVGmsL0%3D&md5=f1f7b268ea64005237530db3cdbe81e2CAS |

[36]  D. K. Farmer, A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, J. L. Jimenez, Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2010, 107, 6670.
Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.CrossRef | 1:CAS:528:DC%2BC3cXltFSjsbs%3D&md5=47c74d907242212f3f7817eda4ed03b0CAS |

[37]  A. C. Aiken, P. F. Decarlo, J. H. Kroll, D. R. Worsnop, J. A. Huffman, K. S. Docherty, I. M. Ulbrich, C. Mohr, J. R. Kimmel, D. Sueper, Y. Sun, Q. Zhang, A. Trimborn, M. Northway, P. J. Ziemann, M. R. Canagaratna, T. B. Onasch, M. R. Alfarra, A. S. H. Prevot, J. Dommen, J. Duplissy, A. Metzger, U. Baltensperger, J. L. Jimenez, O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 2008, 42, 4478.
O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXlvVymsb8%3D&md5=4a4f2d1a7640c8e304c854394de55118CAS |

[38]  S. Kim, R. W. Kramer, P. G. Hatcher, Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal. Chem. 2003, 75, 5336.
Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram.CrossRef | 1:CAS:528:DC%2BD3sXnt1OhsrY%3D&md5=3931757d6be1a7489e7577cec8e436b7CAS |

[39]  D. C. Podgorski, R. Hamdan, A. M. McKenna, L. Nyadong, R. P. Rodgers, A. G. Marshall, W. T. Cooper, Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012, 84, 1281.
Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXhs1OjtbjP&md5=548830d5d3d8b978fde52b78155d28dfCAS |

[40]  Z. G. Wu, R. P. Rodgers, A. G. Marshall, Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Anal. Chem. 2004, 76, 2511.
Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements.CrossRef | 1:CAS:528:DC%2BD2cXisVyisr0%3D&md5=3fa0623c918203a59594261f3bc39cdeCAS |

[41]  E. Kendrick, A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal. Chem. 1963, 35, 2146.
A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds.CrossRef | 1:CAS:528:DyaF2cXisl2ksA%3D%3D&md5=97fb419d742fa3c4738dd3b16341d154CAS |

[42]  M. L. Walser, Y. Desyaterik, J. Laskin, A. Laskin, S. A. Nizkorodov, High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys. Chem. Chem. Phys. 2008, 10, 1009.
High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene.CrossRef | 1:CAS:528:DC%2BD1cXhs1Ors7g%3D&md5=2025e849d57262d01984bc2ed8cd7674CAS |

[43]  C. A. Hughey, R. P. Rodgers, A. G. Marshall, K. N. Qian, W. K. Robbins, Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 2002, 33, 743.
Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD38XltV2iur8%3D&md5=cabd18f07788b26224a22c2c60a730e9CAS |

[44]  P. J. Roach, J. Laskin, A. Laskin, Higher-order mass defect analysis for mass spectra of complex organic mixtures. Anal. Chem. 2011, 83, 4924.
Higher-order mass defect analysis for mass spectra of complex organic mixtures.CrossRef | 1:CAS:528:DC%2BC3MXmtFSns7k%3D&md5=3968405f4c82217a552a8f1da84a069bCAS |

[45]  K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein, A. G. Marshall, Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmos. Environ. 2008, 42, 1476.
Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhvFymurs%3D&md5=c9b7f31bff2765160673dc4084109d9cCAS |

[46]  A. G. Rincón, M. I. Guzman, M. R. Hoffmann, A. J. Colussi, Thermochromism of model organic aerosol matter. J. Phys. Chem. Lett. 2010, 1, 368.
Thermochromism of model organic aerosol matter.CrossRef |

[47]  G. H. Wang, K. Kawamura, Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China. Environ. Sci. Technol. 2005, 39, 7430.
Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China.CrossRef | 1:CAS:528:DC%2BD2MXpsFakurY%3D&md5=10f99386360170046650b8bc665070e2CAS |

[48]  Y. Miyazaki, S. G. Aggarwal, K. Singh, P. K. Gupta, K. Kawamura, Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes. J. Geophys. Res. – Atmos. 2009, 114, D19206.
Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes.CrossRef |

[49]  K. Kawamura, H. Kasukabe, O. Yasui, L. A. Barrie, Production of dicarboxylic-acids in the arctic atmosphere at polar sunrise. Geophys. Res. Lett. 1995, 22, 1253.
Production of dicarboxylic-acids in the arctic atmosphere at polar sunrise.CrossRef | 1:CAS:528:DyaK2MXmvVCnur0%3D&md5=be185b75acac5ae1f3f537ec639384ebCAS |

[50]  J. Z. Yu, H. Yang, H. Y. Zhang, A. K. H. Lau, Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics. Atmos. Environ. 2004, 38, 1061.
Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics.CrossRef | 1:CAS:528:DC%2BD2cXktlWiug%3D%3D&md5=63954836190cf007a82de214b665b3abCAS |

[51]  R. Fisseha, J. Dommen, K. Gaeggeler, E. Weingartner, V. Samburova, M. Kalberer, U. Baltensperger, Online gas and aerosol measurement of water soluble carboxylic acids in Zurich. J. Geophys. Res. – Atmos. 2006, 111, D12316.
Online gas and aerosol measurement of water soluble carboxylic acids in Zurich.CrossRef |

[52]  P. Saxena, L. M. Hildemann, Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 1996, 24, 57.
Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds.CrossRef | 1:CAS:528:DyaK28Xjtlymurw%3D&md5=4eb539c4a51a781a9688c8349d4e46b1CAS |

[53]  K. Kawamura, Identification of C2–C10 ω-oxocarboxylic acids, pyruvic-acid, and C2–C α-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS. Anal. Chem. 1993, 65, 3505.
Identification of C2–C10 ω-oxocarboxylic acids, pyruvic-acid, and C2–C α-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS.CrossRef | 1:CAS:528:DyaK3sXmsVSktLg%3D&md5=0b08362a7662b46e920decbe1a83ef77CAS |

[54]  H. B. Wang, K. Kawamura, K. Yamazaki, Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean. J. Atmos. Chem. 2006, 53, 43.
Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean.CrossRef | 1:CAS:528:DC%2BD28XhslKjsbg%3D&md5=ef78806a51ee0bf60abcecc084077da6CAS |

[55]  K. Kawamura, R. B. Gagosian, Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photooxidation of unsaturated fatty-acids. Nature 1987, 325, 330.
Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photooxidation of unsaturated fatty-acids.CrossRef | 1:CAS:528:DyaL2sXovFCgtw%3D%3D&md5=0c1adc4ea7b29580bf33d281fef834dfCAS |

[56]  J. Warnke, R. Bandur, T. Hoffmann, Capillary-HPLC-ESI-MS/MS method for the determination of acidic products from the oxidation of monoterpenes in atmospheric aerosol samples. Anal. Bioanal. Chem. 2006, 385, 34.
Capillary-HPLC-ESI-MS/MS method for the determination of acidic products from the oxidation of monoterpenes in atmospheric aerosol samples.CrossRef | 1:CAS:528:DC%2BD28XjslKjt7o%3D&md5=8df4df6a8ff2a173ca77f184edf5fff1CAS |

[57]  B. R. T. Simoneit, Biomass burning – a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129.
Biomass burning – a review of organic tracers for smoke from incomplete combustion.CrossRef | 1:CAS:528:DC%2BD38XotVaqtA%3D%3D&md5=f834f0c4003bea46696875a55ec00fc9CAS |

[58]  A. Gelencsér, T. Mészáros, M. Blazsó, G. Kiss, Z. Krivácsy, A. Molnár, E. Mészáros, Structural characterisation of organic matter in fine tropospheric aerosol by pyrolysis-gas chromatography-mass spectrometry. J. Atmos. Chem. 2000, 37, 173.
Structural characterisation of organic matter in fine tropospheric aerosol by pyrolysis-gas chromatography-mass spectrometry.CrossRef |

[59]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636.
Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks.CrossRef | 1:CAS:528:DyaK3sXhtlSqsrc%3D&md5=1a07aabc8b335d2c78866cf0b2a1997aCAS |

[60]  R. J. Sheesley, J. J. Schauer, E. Bean, D. Kenski, Trends in secondary organic aerosol at a remote site in Michigan’s upper peninsula. Environ. Sci. Technol. 2004, 38, 6491.
Trends in secondary organic aerosol at a remote site in Michigan’s upper peninsula.CrossRef | 1:CAS:528:DC%2BD2cXpsFKlsLg%3D&md5=7f5fd029009f5b3cda0b6bb821126fdfCAS |

[61]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Prevot, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.CrossRef | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=0437ae491e64eca2afaa26d3b70e085eCAS |

[62]  B. R. T. Simoneit, Application of molecular marker analysis to vehicular exhaust for source reconciliations. Int. J. Environ. Anal. Chem. 1985, 22, 203.
Application of molecular marker analysis to vehicular exhaust for source reconciliations.CrossRef | 1:CAS:528:DyaL28XpsVGisw%3D%3D&md5=7817fe545351b59ea6be0a5863870a7fCAS |

[63]  R. Szmigielski, J. D. Surratt, Y. Gómez-González, P. Van der Veken, I. Kourtchev, R. Vermeylen, F. Blockhuys, M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, J. H. Seinfeld, W. Maenhaut, M. Claeys, 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L24811.
3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol.CrossRef |

[64]  Y. Iinuma, O. Boge, M. Keywood, T. Gnauk, H. Herrmann, Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation. Environ. Sci. Technol. 2009, 43, 280.
Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation.CrossRef | 1:CAS:528:DC%2BD1cXhsV2rtbrF&md5=4626458ec6c531af85d525abd5da2ebcCAS |

[65]  K. E. Yttri, C. Dye, G. Kiss, Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway. Atmos. Chem. Phys. 2007, 7, 4267.
Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway.CrossRef | 1:CAS:528:DC%2BD2sXhtlWiurbM&md5=90b548fff9de38ffa25f5c995e282c06CAS |

[66]  F. Yasmeen, N. Sauret, J. F. Gal, P. C. Maria, L. Massi, W. Maenhaut, M. Claeys, Characterization of oligomers from methylglyoxal under dark conditions: a pathway to produce secondary organic aerosol through cloud processing during nighttime. Atmos. Chem. Phys. 2010, 10, 3803.
Characterization of oligomers from methylglyoxal under dark conditions: a pathway to produce secondary organic aerosol through cloud processing during nighttime.CrossRef | 1:CAS:528:DC%2BC3cXptVeitbw%3D&md5=e3024181476f6fe573818354bdd4a151CAS |

[67]  M. R. Hoffmann, A. G. Rincón, A. J. Colussi, Photochemical formation of large molecular weight oligomers from low-molecular weight keto-carbonyls in haze aerosol. Geochim. Cosmochim. Acta 2009, 73, A541.

[68]  B. Nozière, P. Dziedzic, A. Córdova, Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4). J. Phys. Chem. A 2009, 113, 231.
Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4).CrossRef |

[69]  Y. Iinuma, C. Muller, O. Boge, T. Gnauk, H. Herrmann, The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions. Atmos. Environ. 2007, 41, 5571.
The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions.CrossRef | 1:CAS:528:DC%2BD2sXot1Ghs7Y%3D&md5=aa77a2a7637ca319239540a9d81d34b2CAS |

[70]  K. Kristensen, M. Glasius, Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring. Atmos. Environ. 2011, 45, 4546.
Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring.CrossRef | 1:CAS:528:DC%2BC3MXpt1ahsbc%3D&md5=90c3dd546a95fd98a8a8122c71873313CAS |

[71]  V. M. León, M. Sáez, E. González-Mazo, A. Gómez-Parra, Occurrence and distribution of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids in several Iberian littoral ecosystems. Sci. Total Environ. 2002, 288, 215.
Occurrence and distribution of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids in several Iberian littoral ecosystems.CrossRef |

[72]  S. Becagli, C. Ghedini, S. Peeters, A. Rottiers, R. Traversi, R. Udisti, M. Chiari, A. Jalba, S. Despiau, U. Dayan, A. Temara, MBAS (methylene blue active substances) and LAS (linear alkylbenzene sulphonates) in Mediterranean coastal aerosols: sources and transport processes. Atmos. Environ. 2011, 45, 6788.
MBAS (methylene blue active substances) and LAS (linear alkylbenzene sulphonates) in Mediterranean coastal aerosols: sources and transport processes.CrossRef | 1:CAS:528:DC%2BC3MXht1OqsbfI&md5=485746d59b76e6c63ef8fba50e64bd90CAS |

[73]  Y. Iinuma, E. Bruggemann, T. Gnauk, K. Muller, M. O. Andreae, G. Helas, R. Parmar, H. Herrmann, Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. – Atmos. 2007, 112, D08209.
Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat.CrossRef |

[74]  M. D. Hays, L. Beck, P. Barfield, R. J. Lavrich, Y. J. Dong, R. L. Vander Wal, Physical and chemical characterization of residential oil boiler emissions. Environ. Sci. Technol. 2008, 42, 2496.
Physical and chemical characterization of residential oil boiler emissions.CrossRef | 1:CAS:528:DC%2BD1cXisVWlurc%3D&md5=2f2384bade12d874d88a8dbffa66ab9eCAS |

[75]  A. Wik, G. Dave, Occurrence and effects of tire wear particles in the environment – a critical review and an initial risk assessment. Environ. Pollut. 2009, 157, 1.
Occurrence and effects of tire wear particles in the environment – a critical review and an initial risk assessment.CrossRef | 1:CAS:528:DC%2BD1cXhsVGgsbzP&md5=2b52e12edd068fb783dfa463896ea412CAS |

[76]  Z. K. Skylakakis, Thiourea, in Concise International Chemical Assessment Document, CICAD 49 2003, pp. 1–40 (Word Health Organization: Geneva).

[77]  A. Kloepfer, M. Jekel, T. Reemtsma, Occurrence, sources, and fate of benzothiazoles in municipal wastewater treatment plants. Environ. Sci. Technol. 2005, 39, 3792.
Occurrence, sources, and fate of benzothiazoles in municipal wastewater treatment plants.CrossRef | 1:CAS:528:DC%2BD2MXivVertr8%3D&md5=63d5e6c6109dbd7f38b3a53b1d72aab2CAS |

[78]  G. C. He, B. Zhao, M. S. Denison, Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts. Environ. Toxicol. Chem. 2011, 30, 1915.
Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts.CrossRef | 1:CAS:528:DC%2BC3MXptVWrsrs%3D&md5=d3fe7a408270a1f715c789a0b5a627d4CAS |

[79]  G. R. Cass, Organic molecular tracers for particulate air pollution sources. TRAC – Trends Analyt. Chem. 1998, 17, 356.
Organic molecular tracers for particulate air pollution sources. TRAC –CrossRef | 1:CAS:528:DyaK1cXktlektbk%3D&md5=5ad181449899758975132530b11dcb57CAS |

[80]  Y. Cheng, S. M. Li, A. Leithead, Chemical characteristics and origins of nitrogen-containing organic compounds in PM2.5 aerosols in the Lower Fraser Valley. Environ. Sci. Technol. 2006, 40, 5846.
Chemical characteristics and origins of nitrogen-containing organic compounds in PM2.5 aerosols in the Lower Fraser Valley.CrossRef | 1:CAS:528:DC%2BD28XptFaitLo%3D&md5=6b00dd174fb86b1eee34939804eb57bfCAS |

[81]  H. Yang, J. Z. Yu, S. S. H. Ho, J. H. Xu, W. S. Wu, C. H. Wan, X. D. Wang, X. R. Wang, L. S. Wang, The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmos. Environ. 2005, 39, 3735.
The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China.CrossRef | 1:CAS:528:DC%2BD2MXlt1WmsLc%3D&md5=23fe981002aa21194d15ead0751d6d6eCAS |

[82]  Y. L. Ma, M. D. Hays, Thermal extraction-two-dimensional gas chromatography–mass spectrometry with heart-cutting for nitrogen heterocyclics in biomass burning aerosols. J. Chromatogr. A 2008, 1200, 228.
Thermal extraction-two-dimensional gas chromatography–mass spectrometry with heart-cutting for nitrogen heterocyclics in biomass burning aerosols.CrossRef | 1:CAS:528:DC%2BD1cXotlOjsrk%3D&md5=564747a400e05fefbe7f4537d0e979c8CAS |

[83]  T. Nielsen, Isolation of polycyclic aromatic-hydrocarbons and nitro-derivatives in complex-mixtures by liquid-chromatography. Anal. Chem. 1983, 55, 286.
Isolation of polycyclic aromatic-hydrocarbons and nitro-derivatives in complex-mixtures by liquid-chromatography.CrossRef | 1:CAS:528:DyaL3sXjvFyjug%3D%3D&md5=2d656b2de62ef2fd89f15a5ff9c61474CAS |

[84]  E. Barbaro, R. Zangrando, I. Moret, C. Barbante, P. Cescon, A. Gambaro, Free amino acids in atmospheric particulate matter of Venice, Italy. Atmos. Environ. 2011, 45, 5050.
Free amino acids in atmospheric particulate matter of Venice, Italy.CrossRef | 1:CAS:528:DC%2BC3MXpt1aiu7g%3D&md5=e1af3128d5945ce9103069c19a575545CAS |

[85]  Q. Zhang, C. Anastasio, Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. Atmos. Environ. 2003, 37, 2247.
Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California.CrossRef | 1:CAS:528:DC%2BD3sXivVCrs7k%3D&md5=35e3157629383fd3c02ea8a8b0eef8b2CAS |

[86]  Y. Iinuma, O. Boge, R. Grafe, H. Herrmann, Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol. 2010, 44, 8453.
Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols.CrossRef | 1:CAS:528:DC%2BC3cXhtlansLvE&md5=04971605dc40b1f8478963642e93d5d9CAS |

[87]  M. A. J. Harrison, S. Barra, D. Borghesi, D. Vione, C. Arsene, R. L. Olariu, Nitrated phenols in the atmosphere: a review. Atmos. Environ. 2005, 39, 231.
Nitrated phenols in the atmosphere: a review.CrossRef | 1:CAS:528:DC%2BD2cXhtVKgurvJ&md5=59997b48fc9f793c2fba666730eae063CAS |

[88]  T. Thornberry, D. M. Murphy, D. S. Thomson, J. de Gouw, C. Warneke, T. S. Bates, P. K. Quinn, D. Coffman, Measurement of aerosol organic compounds using a novel collection/thermal-desorption PTR-ITMS instrument. Aerosol Sci. Technol. 2009, 43, 486.
Measurement of aerosol organic compounds using a novel collection/thermal-desorption PTR-ITMS instrument.CrossRef | 1:CAS:528:DC%2BD1MXjt1eqsL8%3D&md5=67b89ef796d2ff882d2687b6ae86a094CAS |

[89]  R. Atkinson, E. C. Tuazon, T. J. Wallington, S. M. Aschmann, J. Arey, A. M. Winer, J. N. Pitts, Atmospheric chemistry of aniline, n,n-dimethylaniline, pyridine, 1,3,5-triazine, and nitrobenzene. Environ. Sci. Technol. 1987, 21, 64.
Atmospheric chemistry of aniline, n,n-dimethylaniline, pyridine, 1,3,5-triazine, and nitrobenzene.CrossRef | 1:CAS:528:DyaL2sXit1Giug%3D%3D&md5=8d060731587e09c9a413c5e95f0ea12bCAS |

[90]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, Sources of fine organic aerosol. 6. Cigarette-smoke in the urban atmosphere. Environ. Sci. Technol. 1994, 28, 1375.
Sources of fine organic aerosol. 6. Cigarette-smoke in the urban atmosphere.CrossRef | 1:CAS:528:DyaK2cXktFKltrw%3D&md5=6bf4fb9098dd7aa6aa0a24e5bf5b50eaCAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (880 KB) Export Citation Cited By (14)