Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Effective population size of koala populations under different population management regimes including contraception

Mark M. Tanaka A C , Romane Cristescu B and Desmond W. Cooper B
+ Author Affiliations
- Author Affiliations

A Evolution & Ecology Research Centre and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Australia.

B Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia.

C Corresponding author. Email: m.tanaka@unsw.edu.au

Wildlife Research 36(7) 601-609 https://doi.org/10.1071/WR08160
Submitted: 5 November 2008  Accepted: 30 July 2009   Published: 28 October 2009

Abstract

Context. The management of wildlife populations aiming to control population size should also consider the preservation of genetic diversity. Some overabundant koala populations, for example, have low genetic variation. Different management strategies will affect population genetic variation differently.

Aims. Here, we compare four strategies with respect to their effects on the effective population size, Ne , and therefore on genetic variation.

Methods. The four strategies of interest are: (1) sterilisation or culling (which have the same effect on genetic variation); (2) random contraception of females with replacement; (3) random contraception of females without replacement; and (4) regular contraception, giving every female equal opportunity to reproduce. We develop mathematical models of these alternative schemes to evaluate their impact on Ne . We also consider the effect of changing population sizes by investigating a model with geometric population growth in which females are removed by sterilisation or culling.

Key results. We find that sterilisation/culling at sexual maturity has the most detrimental effect on Ne , whereas regular contraception has no impact on Ne . Random contraception lies between these two extremes, leading to a moderate reduction in Ne . Removal of females from a growing population results in a higher Ne than the removal of females from a static population.

Conclusions. Different strategies for controlling a population lead to different effective population sizes.

Implications. To preserve genetic diversity in a wildlife population under control, the effective population size should be kept as large as possible. We suggest that a suitable approach in managing koala populations may be to prevent reproduction by all females older than a particular age.

Additional keywords: conservation genetics, effective population size, genetic variation, hormonal implant, wildlife management.


Acknowledgements

We thank John Sved and Cathy Herbert for helpful discussions. This work was supported by the Australian Research Council (ARC Linkage Grant LPO560344).


References

Amos, W. , and Balmford, A. (2001). When does conservation genetics matter? Heredity 87, 257–265.
CAS | PubMed |

Ballou, J. D. , Traylor-Holzer, K. , Turner, A. , Malo, A. F. , Powell, D. , Maldonado, J. , and Eggert, L. (2008). Simulation model for contraceptive management of the Assateague Island feral horse population using individual-based data. Wildlife Research 35, 502–512.
CAS |

Barlow, N. , Kean, J. , and Briggs, C. (1997). Modelling the relative efficacy of culling and sterilisation for controlling populations. Wildlife Research 24, 129–141.


Bijlsma, R. , Bundgaard, J. , and Boerema, A. C. (2000). Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. Journal of Evolutionary Biology 13, 502–514.


Booy, G. , Hendriks, R. J. J. , Smulders, M. J. M. , Van Groenendael, J. M. , and Vosman, B. (2000). Genetic diversity and the survival of populations. Plant Biology 2, 379–395.


Caballero, A. (1994). Developments in the prediction of effective population size. Heredity 73, 657–679.
PubMed |

Caballero, A. (1995). On the effective size of populations with separate sexes, with particular reference to sex-linked genes. Genetics 139, 1007–1011.
CAS | PubMed |

Caughley G. (1977). ‘Analysis of Vertebrate Populations.’ (John Wiley & Sons: London.)

Chambers, L. K. , Singleton, G. R. , and Hinds, L. A. (1999). Fertility control of wild mouse populations: the effects of hormonal competence and an imposed level of sterility. Wildlife Research 26, 579–591.


Chia, A. B. , and Pollak, E. (1974). The inbreeding effective number and the effective number of alleles in a population that varies in size. Theoretical Population Biology 6, 149–172.
CAS | PubMed |

Cowan, P. E. , and Tyndale-Biscoe, C. H. (1997). Australian and New Zealand mammal species considered to be pests or problems. Reproduction Fertility and Development 9, 27–36.
CAS |

Ellegren, H. , Hartman, G. , Johansson, M. , and Andersson, L. (1993). Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proceedings of the National Academy of Sciences of the United States of America 90, 8150–8153.
CAS | PubMed |

Epstein, P. R. (2001). Climate change and emerging infectious diseases. Microbes and Infection 3, 747–754.
CAS | PubMed |

Flagstad, Ø. , Walker, C. W. , Vilà, C. , Sundqvist, A. K. , Fernholm, B. , Hufthammer, A. K. , Wiig, Ø. , Koyola, I. , and Ellegren, H. (2003). Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Molecular Ecology 12, 869–880.
CAS | PubMed |

Frankham, R. (2005). Genetics and extinction. Biological Conservation 126, 131–140.


Garrott, R. A. , White, P. J. , and Vanderbilt White, C. A. (1993). Overabundance: an Issue for conservation biologists? Conservation Biology 7, 946–949.


Goodrich, J. M. , and Buskirk, S. W. (1995). Control of abundant native vertebrates for conservation of endangered species. Conservation Biology 9, 1357–1364.


Gross, J. E. (2000). A dynamic simulation model for evaluating effects of removal and contraception on genetic variation and demography of Pryor Mountain wild horses. Biological Conservation 96, 319–330.


Herbert C. A. (2007). From the urban fringe to the Abrolhos Islands: management challenges of burgeoning marsupial populations. In ‘Pest or Guest: the Zoology of Overabundance’. (Eds D. Lunney, P. Eby, P. Hutchings and S. Burgin.) pp. 129–141. (Royal Zoological Society of New South Wales: Sydney.)

Herbert, C. A. , Trigg, T. E. , Renfree, M. B. , Shaw, G. , Eckery, D. C. , and Cooper, D. W. (2004). Effects of a gonadotropin-releasing hormone agonist implant on reproduction in a male marsupial, Macropus eugenii. Biology of Reproduction 70, 1836–1842.
CAS | PubMed |

Herbert, C. A. , Trigg, T. E. , and Cooper, D. W. (2006). Fertility control in female eastern grey kangaroos using the GnRH agonist deslorelin. 1. Effects on reproduction. Wildlife Research 33, 41–46.
CAS |

Hill, W. G. (1979). Note on effective population-size with overlapping generations. Genetics 92, 317–322.
PubMed |

Hone, J. (1992). Rate of increase and fertility control. Journal of Applied Ecology 29, 695–698.


Houlden, B. A. , England, P. R. , Taylor, A. C. , Greville, W. D. , and Sherwin, W. B. (1996). Low genetic variability of the koala. Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck. Molecular Ecology 5, 269–281.
CAS | PubMed |

Kreeger T. (1997). Overview of delivery systems for the administration of contraceptives to wildlife. Technical report, United States Department of Agriculture, Washington, DC.

Madsen, T. , Stille, B. , and Shine, R. (1996). Inbreeding depression in an isolated population of adders Vipera berus. Biological Conservation 75, 113–118.


Martin R. , and Handasyde K. (1999). ‘The Koala: Natural History, Conservation and Management.’ Australian Natural History Series. (University of New South Wales Press: Hong Kong.)

Martin, J. , French, K. , and Major, R. (2007). The pest status of Australian white ibis (Threskiornis molucca) in urban situations and the effectiveness of egg-oil in reproductive control. Wildlife Research 34, 319–324.
CrossRef |

Meredith, E. P. , Rodzen, J. A. , Banks, J. D. , Schaefer, R. , Ernest, H. B. , Famula, T. R. , and May, B. P. (2007). Microsatellite analysis of three subspecies of elk (Cervus elaphus) in California. Journal of Mammalogy 88, 801–808.


Merrill, J. A. , Cooch, E. G. , and Curtis, P. D. (2003). Time to reduction: factors influencing management efficacy in sterilizing overabundant white-tailed deer. The Journal of Wildlife Management 67, 267–279.


Merrill, J. A. , Cooch, E. G. , and Curtis, P. D. (2006). Managing an overabundant deer population by sterilization: effects of immigration, stochasticity and the capture process. The Journal of Wildlife Management 70, 268–277.


Nagylaki, T. (1995). The inbreeding effective population number in dioecious populations. Genetics 139, 473–485.
CAS | PubMed |

Newman, D. , and Pilson, D. (1997). Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51, 354–362.


Oogjes, G. (1997). Ethical aspects and dilemmas of fertility control of unwanted wildlife: an animal welfarist’s perspective. Reproduction, Fertility and Development 9, 163–167.
CAS |

Pounds, J. A. , Bustamante, M. R. , Coloma, L. A. , Consuegra, J. A. , and Fogden, M. P., , et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167.
CAS | PubMed |

Reed, D. H. , and Bryant, E. H. (2000). Experimental tests of minimum viable population size. Animal Conservation 3, 7–14.


Sherwin, W. B. , and Murray, N. D. (1990). Population and conservation genetics of marsupials. Australian Journal of Zoology 37, 161–180.


Siddle, H. V. , Kreiss, A. , Eldridge, M. D. , Noonan, E. , Clarke, C. J. , Pyecroft, S. , Woods, G. M. , and Belov, K. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences of the United States of America 104, 16 221–16 226.
CAS | PubMed |

Sinclair, A. (1997). Fertility control of mammal pests and the conservation of endangered marsupials. Reproduction, Fertility and Development 9, 1–16.
CAS |

Stenseth, N. (1981). How to control pest species: application of models from the theory of island biogeography in formulating pest control strategies. Journal of Applied Ecology 18, 773–794.


Stenseth, N. C. , Leirs, H. , Mercelis, S. , and Mwanjabe, P. (2001). Comparing strategies for controlling an African pest rodent: an empirically based theoretical study. Journal of Applied Ecology 38, 1020–1031.


Tarlinton, R. E. , Meers, J. , and Young, P. R. (2006). Retroviral invasion of the koala genome. Nature 442, 79–81.
CAS | PubMed |

Thomas, C. D. , Cameron, A. , Green, R. E. , Bakkenes, M. , and Beaumont, L. J., , et al. (2004). Extinction risk from climate change. Nature 427, 145–148.
CAS | PubMed |

Todd, C. R. , Forsyth, D. M. , and Choquenot, D. (2008). Modelling the effects of fertility control on koala-forest dynamics. Journal of Applied Ecology 45, 568–578.


Twigg, L. E. , and Williams, C. K. (1999). Fertility control of overabundant species; can it work for feral rabbits? Ecology Letters 2, 281–285.


Twigg, L. E. , Lowe, T. J. , Martin, G. R. , Wheeler, A. G. , Gray, G. S. , Griffin, S. L. , O’Reilly, C. M. , Robinson, D. J. , and Hubach, P. H. (2000). Effects of surgically imposed sterility on free-ranging rabbit populations. Journal of Applied Ecology 37, 16–39.


Wilson, G. A. , and Strobeck, C. (1999). Genetic variation within and relatedness among wood and plains bison populations. Genome 42, 483–496.
CAS | PubMed |

Woodward, R. , Herberstein, M. E. , and Herbert, C. A. (2006). Fertility control in female eastern grey kangaroos using the GnRH agonist deslorelin. 2. Effects on behaviour. Wildlife Research 33, 47–55.
CAS |



Rent Article (via Deepdyve) Export Citation Cited By (1)