Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

AKDEC home range size and habitat selection of Sumatran elephants

Alexander Markus Moßbrucker A B E , Christen H. Fleming C D , Muhammad Ali Imron A , Satyawan Pudyatmoko A and Sumardi A
+ Author Affiliations
- Author Affiliations

A Faculty of Forestry, Universitas Gadjah Mada (UGM), Jl. Agro No. 1 Bulaksumur, Yogyakarta 55281, Indonesia.

B Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, Frankfurt 60316, Germany.

C Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA.

D Department of Biology, University of Maryland, College Park, MD 20742, USA.

E Corresponding author. Email: islandelephants@gmail.com

Wildlife Research 43(7) 566-575 https://doi.org/10.1071/WR16069
Submitted: 15 April 2016  Accepted: 4 October 2016   Published: 14 November 2016

Abstract

Context: Understanding ranging behaviour and habitat selection of threatened species is crucial for the development of conservation strategies and the design of conservation areas. Our understanding of the actual needs of the critically endangered Sumatran elephant in this context is insufficient.

Aims: Provide reliable subspecies-specific information on home range size and habitat selection of Sumatran elephants.

Methods: Using both the new area-corrected autocorrelated kernel density estimation (AKDEC) and two commonly applied conventional methods, the home range sizes of nine Sumatran elephants were estimated. Elephant habitat selection was studied using Manly’s selection ratios.

Key results: AKDEC home ranges of adults ranged from 275 km2 to 1352 km2. Estimates obtained using conventional KDE and minimum convex polygon (MCP) ranged between 156 km2 and 997 km2. Overall habitat selection was significant for both slope and land-cover type, whereas individual preferences varied to some extent. On the basis of global selection ratios, we found natural forest, pulpwood plantations and gentle slopes (≤4°) to be significantly selected, whereas most areas affected by human activities and steeper slopes were avoided by the majority of animals included in the study.

Conclusions: As expected, AKDEC estimates were much larger than those obtained using conventional methods because conventional methods have a tendency to underestimate home range size when confronted with autocorrelated movement data and produce estimates that refer to the limited study period only, whereas AKDEC estimates include the predicted animal’s long-term space use. The extremely large AKDEC estimate obtained for a subadult male most likely represents a combination of population dispersal range and temporary home range rather than its final adult home range. Regardless, it appears that Sumatran elephants roam over much larger areas than previously assumed. Natural forests and relatively flat areas are of great importance for Sumatran elephants. The observed intensive use of pulpwood plantations by one individual is likely because of limited availability of alternative suitable habitats.

Implications: A landscape-wide approach to elephant conservation that takes large home ranges into account, is required, and should include forest protection and restoration and elephant friendly management of existing pulpwood concessions, with special focus on areas with relatively gentle slopes.

Additional keywords: area-corrected autocorrelated kernel density estimation, Asian elephant, Bukit Tigapuluh, elephant conservation, Elephas maximus sumatranus, habitat preference, movement behaviour, ranging behaviour, resource selection.


References

Alfred, R., Ahmad, A. H., Payne, J., Williams, C., Ambu, L. N., How, P. M., and Goossens, B. (2012). Home range and ranging behaviour of Bornean elephant (Elephas maximus borneensis) females. PLoS One 7, .
Home range and ranging behaviour of Bornean elephant (Elephas maximus borneensis) females.CrossRef |

Baskaran, N., Balasubramanian, M., Swaminathan, S., and Desai, A. A. (1995). Home range of elephants in the Nilgiri Biosphere Reserve, South India. In ‘A Week with Wlephants’. (Eds J. C. Daniel and H. S. Datye.) pp. 296 – 313. (Bombay Natural History Society, Bombay, and Oxford University Press: New Delhi, India.)

Blake, S., and Hedges, S. (2004). Sinking the flagship: the case of forest elephants in Asia and Africa. Conservation Biology 18, 1191–1202.
Sinking the flagship: the case of forest elephants in Asia and Africa.CrossRef |

Boyce, M. S., Pitt, J., Northrup, J. M., Morehouse, A. T., Knopff, K. H., Cristescu, B., and Stenhouse, G. B. (2010). Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 365, 2213–2219.
Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data.CrossRef |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-theoretic Approach’. 2nd edn. (Springer: New York.)

Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24, 346–352.
Territoriality and home range concepts as applied to mammals.CrossRef |

Calabrese, J. M., Fleming, C. H., and Gurarie, E. (2016). ctmm: an R package for analyzing animal relocation data as a continuous-time stochastic process. Methods in Ecology and Evolution , .
ctmm: an R package for analyzing animal relocation data as a continuous-time stochastic process.CrossRef |

Calenge, C. (2006). The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197, 516–519.
The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals.CrossRef |

Chiang, P.-J. (2007). Ecology and conservation of Formosan clouded leopard, its prey, and other sympatric carnivores in southern Taiwan. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Choudhury, A., Lahiri Choudhury, D. K., Desai, A., Duckworth, J. W., Easa, P. S., Johnsingh, A. J. T., Fernando, P., Hedges, S., Gunawardena, M., Kurt, F., Karanth, U., Lister, A., Menon, V., Riddle, H., Rübel, A., and Wikramanayake, E. (2008). ‘Elephas maximus. The IUCN Red List of Threatened Species.’ e.T7140A12828813. 10.2305/IUCN.UK.2008.RLTS.T7140A12828813.en

de Silva, M., and de Silva, P. K. (2007). ‘The Sri Lankan Elephant: Its its Evolution, Ecology and Conservation.’ (Wildlife Heritage Trust: Colombo, Sri Lanka.)

Delgado, R. A., and Van Schaik, C. P. (2000). The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): a tale of two islands. Evolutionary Anthropology 9, 201–218.
The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): a tale of two islands.CrossRef |

Dennison, C. C., Harveson, P. M., and Harveson, L. A. (2016). Assessing habitat relationships of mountain lions and their prey in the Davis Mountains, Texas. The Southwestern Naturalist 61, 18–27.
Assessing habitat relationships of mountain lions and their prey in the Davis Mountains, Texas.CrossRef |

Dickson, B. G., Jenness, J. S., and Beier, P. (2005). Influence of vegetation, topography, and roads on cougar movement in southern California. The Journal of Wildlife Management 69, 264–276.
Influence of vegetation, topography, and roads on cougar movement in southern California.CrossRef |

Dunn, J. E., and Gipson, P. S. (1977). Analysis of radio telemetry data in studies of home range. Biometrics 33, 85–101.
Analysis of radio telemetry data in studies of home range.CrossRef |

English, M. (2015). Resource-use and recursion by a mega-herbivore. Elephas maximus borneensis. Ph.D Thesis, Victoria University of Wellington.

Fernando, P., Wikramanayake, E. D., Janaka, H. K., Jayasinghe, L. K. A., Gunawardena, M., Kotagama, S. W., Weerakoon, D., and Pastorini, J. (2008). Ranging behavior of the Asian elephant in Sri Lanka. Mammalian Biology – Zeitschrift fur Saugetierkunde 73, 2–13.
Ranging behavior of the Asian elephant in Sri Lanka.CrossRef |

Fleischer, R. C., Perry, E. A., Muralidharan, K., Stevens, E. E., and Wemmer, C. M. (2001). Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution 55, 1882–1892.
Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA.CrossRef | 1:STN:280:DC%2BD3MrnsVWksQ%3D%3D&md5=d5f6e71a7f40164ca5ec48d3ae34fdbeCAS |

Fleming, C. H., and Calabrese, J. M. (2016). ‘ctmm: Continuous-Time Movement Modeling. R Package Version 0.3.2.’ Available at http://cran.r-project.org/package=ctmm

Fleming, C. H., and Calabrese, J. M. (2016). A new kernel-density estimator for accurate homerange and species-range estimation. Methods in Ecology and Evolution , .

Fleming, C. H., Calabrese, J. M., Mueller, T., Olson, K. A., Leimgruber, P., and Fagan, W. F. (2014). From fine-scale foraging to home ranges: a semi-variance approach to identifying movement modes across spatiotemporal scales. American Naturalist 183, E154–E167.
From fine-scale foraging to home ranges: a semi-variance approach to identifying movement modes across spatiotemporal scales.CrossRef |

Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., and Calabrese, J. M. (2015). Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188.
Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator.CrossRef | 1:STN:280:DC%2BC28%2Fpt1amsA%3D%3D&md5=facab23d407ea5b812aebd63415c320cCAS |

Gopala, A., Hadian, O., Sunarto, Sitompul, A., Williams, A., Leimgruber, P., Chambliss, S. E., and Gunaryadi, D. (2011). ‘Elephas maximus ssp. sumatranus. The IUCN Red List of Threatened Species.’ Available at http://www.iucnredlist.org

Hansteen, T. L., Andreassen, H. P., and Ims, R. A. (1997). Effects of spatiotemporal scale on autocorrelation and home range estimators. The Journal of Wildlife Management 61, 280–290.
Effects of spatiotemporal scale on autocorrelation and home range estimators.CrossRef |

Hayne, D. W. (1949). Calculation of size of home range. Journal of Mammalogy 30, 1–18.
Calculation of size of home range.CrossRef |

Hedges, S., Tyson, M. J., Sitompul, A. F., Kinnaird, M. F., and Gunaryadi, D. (2005). Distribution, status, and conservation needs of Asian elephants (Elephas maximus) in Lampung Province, Sumatra, Indonesia. Biological Conservation 124, 35–48.
Distribution, status, and conservation needs of Asian elephants (Elephas maximus) in Lampung Province, Sumatra, Indonesia.CrossRef |

Imron, M. A., Herzog, S., and Berger, U. (2011). The influence of agroforestry and other land-use types on the persistence of a sumatran tiger (Panthera tigris sumatrae) population: an individual-based model approach. Environmental Management 48, 276–288.
The influence of agroforestry and other land-use types on the persistence of a sumatran tiger (Panthera tigris sumatrae) population: an individual-based model approach.CrossRef |

Jerina, K., and Adamic, M. (2008). Fifty years of brown bear populatoin expansion: effects of sex-biased dispersal on rate of expansion and population structure. Journal of Mammalogy 89, 1491–1501.
Fifty years of brown bear populatoin expansion: effects of sex-biased dispersal on rate of expansion and population structure.CrossRef |

Kertson, B. N., and Marzluff, J. M. (2011). Improving studies of resource selection by understanding resource use. Environmental Conservation 38, 18–27.
Improving studies of resource selection by understanding resource use.CrossRef |

Kumar, M. A., Mudappa, D., and Raman, T. R. S. (2010). Asian elephant Elephas maximus habitat use and ranging in fragmented rainforest and plantations in the Anamalai Hills, India. Tropical Conservation Science 3, 143–158.

Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L., and Erickson, W. P. (2002). ‘Resource Selection by Animals: Statistical Design and Analysis for Field Studies.’ 2nd edn. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Menteri Kehutanan (2004). ‘Peraturan Menteri Kehutanan Nomor : SK.159/Menhut-II/2004 – Restorasi Ekosistem Di Kawasan Hutan Produksi.’ (Indonesia.)

Moßbrucker, A. M. (2009). Zum Status des Sumatra Elefanten (Elephas maximus sumatranus) im Landschaftsraum Bukit Tigapuluh, Sumatra, Indonesien: Abundanz Altersstruktur und Gefährdung. Masters Thesis, Freiburg.

Moßbrucker, A. M. (2013). Towards a peaceful coexistence between men and elephants in Bukit Tigapuluh, Indonesia (Phase I). Final report to USFWS, Jambi, Indonesia.

Moßbrucker, A. M., Apriyana, I., Fickel, J., Imron, M. A., Pudyatmoko, S., Sumardi, , and Suryadi, H. (2015). Non-invasive genotyping of Sumatran elephants: implications for conservation. Tropical Conservation Science 8, 745–759.
Non-invasive genotyping of Sumatran elephants: implications for conservation.CrossRef |

Olivier, R. C. D. (1978). On the ecology of the Asian elephant. Ph.D. Thesis, University of Cambridge, Cambridge, UK.

Powell, R. A. (2000). Animal home ranges and territories and home range estimators. In ‘Research Techniques in Animal Ecology’. (Eds L. Boitani and T. K. Fuller.) pp. 65–103. (Columbia University Press: New York.)

Powell, R. A., and Mitchell, M. S. (2012). What is a home range? Journal of Mammalogy 93, 948–958.
What is a home range?CrossRef |

Pratje, P. H., and Sitompul, A. F. (2009). ‘Resource Base Inventory: Implementation of Conservation in Bukit Tigapuluh Ecosystem.’ (Frankfurt Zoological Society: Jambi, Indonesia.)

Quantum GIS Development Team (2015). ‘Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.’ Available at http://qgis.osgeo.org.

R Core Team (2016). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.) Available at http://www.r-project.org

Reichman, O. J., and Aitchison, S. (1981). Mammal trails on mountain slopes: optimal paths in relation to slope angle and body weight. American Naturalist 117, 416–420.
Mammal trails on mountain slopes: optimal paths in relation to slope angle and body weight.CrossRef |

Rood, E., Ganie, A. A., and Nijman, V. (2010). Using presence-only modelling to predict Asian elephant habitat use in a tropical forest landscape: implications for conservation. Diversity & Distributions 16, 975–984.
Using presence-only modelling to predict Asian elephant habitat use in a tropical forest landscape: implications for conservation.CrossRef |

Rooney, S. M., Wolfe, A., and Hayden, T. J. (1998). Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. Mammal Review 28, 89–98.
Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects.CrossRef |

Ropert-Coudert, Y., and Wilson, R. P. (2005). Trends and perspectives in animal-attached remote sensing. Frontiers in Ecology and the Environment 3, 437–444.
Trends and perspectives in animal-attached remote sensing.CrossRef |

Santiapillai, C., and Jackson, P. (1990). ‘The Asian elephant. An action plan for its conservation.’ (IUCN/SSC Asian Elephant Specialist Group: Gland, Switzerland.)

Seaman, D. E. (1999). Effects of sample size on kernel home range estimates. The Journal of Wildlife Management 63, 739–747.
Effects of sample size on kernel home range estimates.CrossRef |

Seaman, D. E., and Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085.
An evaluation of the accuracy of kernel density estimators for home range analysis.CrossRef |

Shoshani, J., and Eisenberg, J. F. (1982). Elephas maximus. Mammalian Species 182, 1–8.
Elephas maximus.CrossRef |

Simcharoen, A., Savini, T., Gale, G. A., Roche, E., Chimchome, V., and Smith, J. L. D. (2014). Ecological factors that influence sambar (Rusa unicolor) distribution and abundance in western Thailand: implications for tiger conservation. The Raffles Bulletin of Zoology 62, 100–106.

Singleton, I., and van Schaik, C. P. (2001). Orangutan home range size and its determinants in a Sumatran swamp forest. International Journal of Primatology 22, 877–911.
Orangutan home range size and its determinants in a Sumatran swamp forest.CrossRef |

Sitompul, A. F., Griffin, C. R., and Fuller, T. K. (2013a). Sumatran elephant ranging behavior in a fragmented rainforest landscape. International Journal of Biodiversity and Conservation 5, 66–72.
Sumatran elephant ranging behavior in a fragmented rainforest landscape.CrossRef |

Sitompul, A. F., Griffin, C. R., Rayl, N. D., and Fuller, T. K. (2013b). Spatial and temporal habitat use of an Asian elephant in Sumatra. Animals 3, 670–679.
Spatial and temporal habitat use of an Asian elephant in Sumatra.CrossRef |

Smith, J. L. D. (1993). The role of dispersal in structuring the Chitwan tiger population. Behaviour 124, 165–195.
The role of dispersal in structuring the Chitwan tiger population.CrossRef |

Steinheim, G., Wegge, P., Fjellstad, J. I., Jnawali, S. R., and Weladji, R. B. (2005). Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinocerus unicornis) in Nepal. Journal of Zoology 265, 377–385.
Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinocerus unicornis) in Nepal.CrossRef |

Sukumar, R. (1992). ‘The Asian Elephant: Ecology and Management.’ 1st edn. (Cambridge University Press: Cambridge, UK.)

Sukumar, R. (2003). ‘The Living Elephants: Evolutionary Ecology, Behavior, and Conservation.’ (Oxford University Press: Oxford, UK.)

Thomas, D. L., and Taylor, E. J. (1990). Study designs and tests for comparing resource use and availability. The Journal of Wildlife Management 54, 322–330.
Study designs and tests for comparing resource use and availability.CrossRef |

Thompson, D. J., and Jenks, J. A. (2010). Dispersal movements of subadult cougars from the Black Hills: the notions of range expansion and recolonization. Ecosphere 4, art8.
Dispersal movements of subadult cougars from the Black Hills: the notions of range expansion and recolonization.CrossRef |

Wall, J., Douglas-Hamilton, I., and Vollrath, F. (2006). Elephants avoid costly mountaineering. Current Biology 16, 527–529.
Elephants avoid costly mountaineering.CrossRef |

Wall, J., Wittemeyer, G., Klinkenberg, B., and Douglas-Hamilton, I. (2014). Novel opportunities for wildlife conservation and research with real-time monitoring. Ecological Applications 24, 593–601.
Novel opportunities for wildlife conservation and research with real-time monitoring.CrossRef |

Weerakoon, D. K., Gunawardene, M. D., Janaka, H. K., Jayasinghe, L. K. A., Perera, R. A. R., Fernando, P., and Wickramanayake, E. (2004). Ranging behaviour and habitat use of elephants in Sri Lanka. In ‘Endangered Elephants, Past, Present & Future. Proceedings of the Symposium on Human Elephant Relationships and Conflicts’, Sri Lanka, September 2003. (Ed J. Jayewardene.) pp. 68–70. (Biodiversity & Elephant Conservation Trust: Colombo, Sri Lanka.)

Whitten, T., Damanik, S. J., Anwar, J., and Hisyam, N. (Eds) (1999). ‘The Ecology of Sumatra.’ (Tuttle Publishing: Clarendon, VT.)

Wikelski, M., and Kays, R. (2015). Movebank: archive, analysis and sharing of animal movement data. World Wide Web electronic publication. Available at http://www.movebank.org.

Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70, 164–168.
Kernel methods for estimating the utilization distribution in homerange studies.CrossRef |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (25 KB) Export Citation

View Altmetrics