Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

l-to-d-peptide isomerase in male echidna venom1

Jennifer M. S. Koh A , Leesa Haynes B , Katherine Belov C and Philip W. Kuchel A D
+ Author Affiliations
- Author Affiliations

A School of Molecular Bioscience, Building G08, University of Sydney, Sydney, NSW 2006, Australia.

B Healesville Sanctuary, Badger Creek Road, Healesville, Vic. 3777, Australia.

C Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.

D Corresponding author. Email: philip.kuchel@sydney.edu.au.

Australian Journal of Zoology 58(5) 284-288 https://doi.org/10.1071/ZO10045
Submitted: 21 June 2010  Accepted: 28 October 2010   Published: 8 December 2010

Abstract

The monotremes (the echidnas and the platypus) display both mammalian and reptilian features. Male monotremes have a bilateral crural gland that is connected via a duct to a spur on each hind limb. Male echidnas appear not to use their spurs as weapons in aggressive acts, but the crural system may have a role in reproductive behaviour because it appears only to be active during the breeding season. The secretions produced by the echidna’s crural gland have not hitherto been biochemically or pharmacologically characterised. We used reverse-phase high-performance liquid chromatography (RP-HPLC) to separate the components of echidna venom and compared the chromatograms with those from platypus venom. The echidna venom appears to contain fewer proteins and peptides than platypus venom; however, it appears to have defensin-like peptides that behave similarly on RP-HPLC to those in platypus venom. Like platypus venom, echidna venom has peptidyl aminoacyl l/d-peptide isomerase activity. An RP-HPLC-based assay showed that the second amino acid residue, of a probe synthetic hexapeptide, was converted into the d-form, when incubated with echidna venom.

Additional keywords: platypus, d-amino acid.


References

Augee, M. L. (1995). Short-beaked echidna. In ‘The Mammals of Australia’. (Ed. R. Strahan.) pp. 40–43. (Australia Museum & Reed Books: Sydney.)

Bansal, P. S., Torres, A. M., Crossett, B., Wong, K. K. Y., Koh, J. M. S., Geraghty, D. P., Vandenberg, J. I., and Kuchel, P. W. (2008). Substrate specificity of platypus venom l-to-d-peptide isomerase. The Journal of Biological Chemistry 283, 8969–8975.
Substrate specificity of platypus venom l-to-d-peptide isomerase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslyrtb8%3D&md5=c092ba5fdc84c55626d3381b4fcba45fCAS | 18158286PubMed |

Brice, P. H. (2009). Thermoregulation in monotremes: riddles in a mosaic. Australian Journal of Zoology 57, 255–263.
Thermoregulation in monotremes: riddles in a mosaic.Crossref | GoogleScholarGoogle Scholar |

Brown, S. (2008). Top billing for platypus at end of evolution tree. Nature 453, 138–139.
Top billing for platypus at end of evolution tree.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12msLc%3D&md5=396ea8e583d279b5a62a9340b5a36aa4CAS | 18464700PubMed |

Dwivedi, S., Kruparani, S. P., and Sankaranarayanan, R. (2005). A d-amino acid editing module coupled to the translational apparatus in archaea. Nature Structural & Molecular Biology 12, 556–557.
A d-amino acid editing module coupled to the translational apparatus in archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks12rtrY%3D&md5=3069a3d966f216cf7b02c38264dafdf4CAS | 15908961PubMed |

Fenner, P. J., Williamson, J. A., and Myers, D. (1992). Platypus envenomation – a painful learning experience. The Medical Journal of Australia 157, 829–832.
| 1:STN:280:DyaK3s%2Fos1Gltw%3D%3D&md5=56bca530a19e5515481315a8e4d15514CAS | 1454022PubMed |

Flannery, T. F., and Groves, C. P. (1998). A revision of the genus Zaglossus (Monotremata, Tachyglossidae), with description of new species and subspecies. Mammalia 62, 367–396.
A revision of the genus Zaglossus (Monotremata, Tachyglossidae), with description of new species and subspecies.Crossref | GoogleScholarGoogle Scholar |

Fujii, N. (2005). D-amino acid in elderly tissues. Biological & Pharmaceutical Bulletin 28, 1585–1589.
D-amino acid in elderly tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWjurzE&md5=0b4a335f249e5a12edd90589ae652785CAS | 16141520PubMed |

Grant, T. (2007). ‘Platypus.’ 4th edn. (CSIRO Publishing: Melbourne.)

Griffiths, M. (1989). Tachyglossidae. In ‘Fauna of Australia. Vol. 1B’. (Eds D. W. Walton and B. J. Richardson.) pp. 407–435. (Australian Government Publication Service: Canberra.)

Heck, S. D., Siok, C. J., Krapcho, K. J., Kelbaugh, P. R., Thadeio, P. F., Welch, M. J., Williams, R. D., Ganong, A. H., Kelly, M. E., Lanzetti, A. J., Gray, W. R., Phillips, D., Parks, T. N., Jackson, H., Ahlijanian, M. K., Saccomano, N. A., and Volkmann, R. A. (1994). Functional consequences of posttranslational isomerization of ser(46) in a calcium-channel toxin. Science 266, 1065–1068.
Functional consequences of posttranslational isomerization of ser(46) in a calcium-channel toxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFSjsbw%3D&md5=defd40df249ff9747c2557c6848c48deCAS | 7973665PubMed |

Hurum, J. H., Luo, Z. X., and Kielan-Jaworowska, Z. (2006). Were mammals originally venomous? Acta Palaeontologica Polonica 51, 1–11.

Hussain, T., Kruparani, S. P., Pal, B., Dock-Bregeon, A. C., Dwivedi, S., Shekar, M. R., Sureshbabu, K., and Sankaranarayanan, R. (2006). Post-transfer editing mechanism of a d-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. The EMBO Journal 25, 4152–4162.
Post-transfer editing mechanism of a d-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFWisrc%3D&md5=9ae52ef9e09233857b5f777a859db4b6CAS | 16902403PubMed |

Jackson, S. M. (2007). ‘Australian Mammals: Biology and Captive Management.’ (CSIRO Publishing: Melbourne.)

Jilek, A., and Kreil, G. (2008). d-Amino acids in animal peptides. Monatshefte für Chemie 139, 1–5.
d-Amino acids in animal peptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitF2k&md5=7fe980b6cf5fed420ab802e3bd723ca7CAS |

Jilek, A., Mollay, C., Tippelt, C., Grassi, J., Mignogna, G., Mullegger, J., Sander, V., Fehrer, C., Barra, D., and Kreil, G. (2005). Biosynthesis of a d-amino acid in peptide linkage by an enzyme from frog skin secretions. Proceedings of the National Academy of Sciences of the United States of America 102, 4235–4239.
Biosynthesis of a d-amino acid in peptide linkage by an enzyme from frog skin secretions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFCrt74%3D&md5=33609b3d51f41e0dfef1a19077a55be1CAS | 15758070PubMed |

Koh, J. M. S., Bansal, P. S., Torres, A. M., and Kuchel, P. W. (2009). Platypus venom: source of novel compounds. Australian Journal of Zoology 57, 203–210.
Platypus venom: source of novel compounds.Crossref | GoogleScholarGoogle Scholar |

Koh, J. M. S., Chow, S. J. P., Crossett, B., and Kuchel, P. W. (2010). Mammalian peptide isomerase: platypus-type activity is present in mouse heart. Chemistry & Biodiversity 7, 1603–1611.
Mammalian peptide isomerase: platypus-type activity is present in mouse heart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1ansLg%3D&md5=e3f40079b2081febfdb0aef3095a6f8fCAS | 20564672PubMed |

Krause, W. J. (2010). Morphological and histochemical observations on the crural gland-spur apparatus of the echidna (Tachyglossus aculeatus) together with comparative observations on the femoral gland-spur apparatus of the duckbilled platypus (Ornithorhyncus anatinus). Cells, Tissues, Organs 191, 336–354.
Morphological and histochemical observations on the crural gland-spur apparatus of the echidna (Tachyglossus aculeatus) together with comparative observations on the femoral gland-spur apparatus of the duckbilled platypus (Ornithorhyncus anatinus).Crossref | GoogleScholarGoogle Scholar | 20224277PubMed |

Miyamoto, T., Sekine, M., Ogawa, T., Hidaka, M., Homma, H., and Masaki, H. (2010). Detection of d-amino acids in purified proteins synthesized in Escherichia coli. Amino Acids 38, 1377–1385.
Detection of d-amino acids in purified proteins synthesized in Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Olsrs%3D&md5=8cf247ded4065f4c2909135a62d79781CAS | 19768521PubMed |

Ollivaux, C., Gallois, D., Amiche, M., Boscameric, M., and Soyez, D. (2009). Molecular and cellular specificity of post-translational aminoacyl isomerization in the crustacean hyperglycaemic hormone family. The FEBS Journal 276, 4790–4802.
Molecular and cellular specificity of post-translational aminoacyl isomerization in the crustacean hyperglycaemic hormone family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmtLvP&md5=37e4ea75d5aba79120f5c5e5bd648a02CAS | 19664061PubMed |

Rismiller, P. D., and Seymour, R. S. (1991). The echidna. Scientific American 264, 96–103.
The echidna.Crossref | GoogleScholarGoogle Scholar |

Torres, A. M., de Plater, G. M., Doverskog, M., Birinyi-Strachan, L. C., Nicholson, G. M., Gallagher, C. H., and Kuchel, P. W. (2000). Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold. The Biochemical Journal 348, 649–656.
Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1SmsL8%3D&md5=853e9d4ba404d76df63682a98b365380CAS | 10839998PubMed |

Torres, A. M., Menz, I., Alewood, P. F., Bansal, P., Lahnstein, J., Gallagher, C. H., and Kuchel, P. W. (2002). D-amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus. FEBS Letters 524, 172–176.
D-amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Wksr0%3D&md5=d624b4b736a9d9616014e8361e123b12CAS | 12135762PubMed |

Torres, A. M., Tsampazi, M., Tsampazi, C., Kennett, E. C., Belov, K., Geraghty, D. P., Bansal, P. S., Alewood, P. F., and Kuchel, P. W. (2006). Mammalian l-to-d-amino-acid-residue isomerase from platypus venom. FEBS Letters 580, 1587–1591.
Mammalian l-to-d-amino-acid-residue isomerase from platypus venom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVegsrg%3D&md5=6e956ae31e1380f21026fdddc4ec0335CAS | 16480722PubMed |

Torres, A. M., Tsampazi, M., Kennett, E. C., Belov, K., Geraghty, D. P., Bansal, P. S., Alewood, P. F., and Kuchel, P. W. (2007). Characterization and isolation of l-to-d-amino-acid-residue isomerase from platypus venom. Amino Acids 32, 63–68.
Characterization and isolation of l-to-d-amino-acid-residue isomerase from platypus venom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ogs7rK&md5=6a2f689a5a20dd7d60ebea4ee80621fbCAS | 16729187PubMed |

Whittington, C. M., Papenfuss, A. T., Bansal, P., Torres, A. M., Wong, E. S. W., Deakin, J. E., Graves, T., Alsop, A., Schatzkamer, K., Kremitzki, C., Ponting, C. P., Temple-Smith, P., Warren, W. C., Kuchel, P. W., and Belov, K. (2008). Defensins and the convergent evolution of platypus and reptile venom genes. Genome Research 18, 986–994.
Defensins and the convergent evolution of platypus and reptile venom genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVygtr4%3D&md5=4f0202fc504f4b32a664128e105cc308CAS | 18463304PubMed |

Whittington, C. M., Koh, J. M. S., Warren, W. C., Papenfuss, A. T., Torres, A. M., Kuchel, P. W., and Belov, K. (2009). Understanding and utilising mammalian venom via a platypus venom transcriptome. Journal of Proteomics 72, 155–164.
Understanding and utilising mammalian venom via a platypus venom transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Oqtbg%3D&md5=a88aa6ef91c2aeebd8510d3cce82fa6aCAS | 19152842PubMed |

Wolosker, H., Blackshaw, S., and Snyder, S. H. (1999). Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proceedings of the National Academy of Sciences of the United States of America 96, 13409–13414.
Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Gmtb0%3D&md5=c8f4c11923f59921efc65e09ddfcd026CAS | 10557334PubMed |