Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Reinstatement of Varanus douarrha Lesson, 1830 as a valid species with comments on the zoogeography of monitor lizards (Squamata : Varanidae) in the Bismarck Archipelago, Papua New Guinea

Valter Weijola A F , Fred Kraus B , Varpu Vahtera A , Christer Lindqvist C and Stephen C. Donnellan D E
+ Author Affiliations
- Author Affiliations

A Zoological Museum, Biodiversity Unit, University of Turku, Turku 20014, Finland.

B Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.

C Cell Biology, Åbo Akademi University, Turku 20520, Finland.

D South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

E School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

F Corresponding author. Email: vweijola@gmail.com

Australian Journal of Zoology 64(6) 434-451 https://doi.org/10.1071/ZO16038
Submitted: 24 May 2016  Accepted: 24 March 2017   Published: 26 April 2017

Abstract

The distribution and taxonomy of varanid lizards occurring in the Bismarck Archipelago is revised on the basis of field surveys, examination of museum vouchers and molecular phylogenetic analyses. A total of four species is recorded: Varanus indicus and Varanus finschi on New Britain and some of its offshore islands, Varanus douarrha on New Ireland, Lavongai and Djaul, and Varanus semotus on Mussau Island. V. douarrha, previously mistaken for both V. indicus and V. finschi, is shown to be the only species represented on New Ireland and is here resurrected as a valid taxon based on an integrated approach combining morphological and molecular evidence. Phylogenetic analyses of two mitochondrial genes suggest that V. indicus is a relatively recent immigrant to the Bismarck Islands, whereas V. douarrha, V. finschi and V. semotus have significantly longer histories in the island group. Together with the recently described V. semotus the revalidation of V. douarrha doubles the number of species known to occur in the Bismarck region and highlights an important component of both local and regional endemism.

Additional keywords: endemism, neotype, New Ireland, taxonomy, Varanus indicus, Varanus finschi.


References

Allison, A. (1996). Zoogeography of amphibians and reptiles of New Guinea and the Pacific region. In ‘The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes’. (Eds A. Keast, and S. E. Miller.) pp. 407–436. (SBP Academic Publishing: Amsterdam.)

Almeida, F. C., Giannini, N. P., Simmons, N. B., and Helgen, K. M. (2014). Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Molecular Phylogenetics and Evolution 77, 83–95.
Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae).CrossRef |

Anderson, A., Sand, C., Petchey, F., and Worthy, T. H. (2010). Faunal extinction and human habitation in New Caledonia: initial results and implications of new research at the Pindai caves. Journal of Pacific Archaeology 1, 89–109.

Aplin, K. P., and Opiang, M. (2011). The mammal fauna of the Nakanai Mountains, east New Britain Province, Papua New Guinea. In ‘Rapid Biological Assessments of the Nakanai Mountains and the Upper Strickland Basin: Surveying the Biodiversity of Papua New Guinea’s Sublime Karst Environments’. (Eds S. J. Richards, and B. G. Gamui.) RAP Bulletin of Biological Assessment 60, 85–103. (Conservation International: Arlington, VA.)

Ast, J. C. (2001). Mitochondrial DNA evidence and evolution in Varanoidea (Squamata). Cladistics 17, 211–226.
Mitochondrial DNA evidence and evolution in Varanoidea (Squamata).CrossRef |

Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., and Alekseyenko, A. V. (2012). Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution 29, 2157–2167.
Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty.CrossRef | 1:CAS:528:DC%2BC38Xht1KjsbvL&md5=a5be8e0cd09b00ac87be2a8fbe83eca4CAS |

Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A., and Lemey, P. (2013). Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Molecular Biology and Evolution 30, 239–243.
Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics.CrossRef | 1:CAS:528:DC%2BC3sXhtFGlsLw%3D&md5=31f7061f93c50b5fb98bd8fcfcff8cb8CAS |

Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems 4, 1027.
An updated digital model of plate boundaries.CrossRef |

Böhme, W., Horn, H.-G., and Ziegler, T. (1994). Zur taxonomie der Pazific-warane (Varanus indicus- komplex): revalidierung von Varanus doreanus (A.B. Meyer, 1874) mit Beschreibung einer neüer Unterart. Salamandra (Frankfurt) 30, 119–142.

Boulenger, G. A. (1885). ‘Catalogue of Lizards in the British Museum.’ 2nd edn. Vol. 2. (Trustees of the British Museum, London.)

Brandenburg, T. (1983). Monitors in the Indo-Australian archipelago. Unpublished Thesis, Leiden University.

Brygoo, E. (1987). Les types de Varanides (Reptiles, Sauriens) du Museum national. Catalogue critique. Bulletin du Museum d’Histoire Naturelle, Paris 4, 21–38.

Crombie, R. I., and Pregill, G. K. (1999). A checklist of the herpetofauna of the Palau Islands (Republic of Palau), Oceania. Herpetological Monographs 13, 29–80.
A checklist of the herpetofauna of the Palau Islands (Republic of Palau), Oceania.CrossRef |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.CrossRef | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=be0f15211e580dee46b13fb61c5d9719CAS |

De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.CrossRef |

Doody, J. S., Green, B., Rhind, D., Castellano, C. M., Sims, R., and Robinson, T. (2009). Population-level declines in Australian predators caused by an invasive species. Animal Conservation 12, 46–53.
Population-level declines in Australian predators caused by an invasive species.CrossRef |

Doody, J. S., Castellano, C. M., Rhind, D., and Green, B. (2013). Indirect facilitation of a native mesopredator by an invasive species: are cane toads re-shaping tropical riparian communities? Biological Invasions 15, 559–568.
Indirect facilitation of a native mesopredator by an invasive species: are cane toads re-shaping tropical riparian communities?CrossRef |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.CrossRef | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=c72a72d6aa0174b4a78ea0d289f56260CAS |

Duyker, E (2014). Prosper Garnot (1794–1838), an early French naturalist in New South Wales. Doryanthes 7, 22–26.

Easteal, S. (1981). The history of introduction of Bufo marinus (Amphibia: Anura); a natural experiment in evolution. Biological Journal of the Linnean Society 16, 93–113.
The history of introduction of Bufo marinus (Amphibia: Anura); a natural experiment in evolution.CrossRef |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.CrossRef | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=e852d41dd9ed18f2db14289e9e1515cbCAS |

Flannery, T. F. (1995). ‘Mammals of the South-West Pacific & Moluccan Islands.’ (Reed Books: Sydney.)

Flannery, T. F., and White, J. P. (1991). Animal translocations. National Geographic Research and Exploration 7, 96–113.

Foufopoulos, J., and Richards, S. (2007). Amphibians and reptiles of New Britain Island, Papua New Guinea: diversity and conservation status. Hamadryad 31, 176–201.

Griffiths, A. D., and McKay, J. L. (2007). Cane toads reduce the abundance and site occupancy of Merten’s water monitor (Varanus mertensi). Wildlife Research 34, 609–615.
Cane toads reduce the abundance and site occupancy of Merten’s water monitor (Varanus mertensi).CrossRef |

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, models, and animations. Journal of Asian Earth Sciences 20, 353–431.
Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, models, and animations.CrossRef |

Hocknull, S. A., Piper, P. J., van den Bergh, G. D., Due, R. A., Morwood, M. J., and Kurniawan, I (2009). Dragon’s paradise lost: palaebiogeography, evolution and extinction of the largest-ever terrestrial lizards (Varanidae). PlosOne 4, e7241.
Dragon’s paradise lost: palaebiogeography, evolution and extinction of the largest-ever terrestrial lizards (Varanidae).CrossRef |

Igag, P. (2011). Birds of the Nakanai Mountains, East New Britain Province, Papua New Guinea. In ‘Rapid Biological Assessments of the Nakanai Mountains and the Upper Strickland Basin: Surveying the Biodiversity of Papua New Guinea’s Sublime Karst Environments’. (Eds S. J. Richards, and B. G. Gamui.) RAP Bulletin of Biological Assessment 60, 81–84. (Conservation International: Arlington, VA.)

Jolly, C. J., Shine, R., and Greenlees, M. J. (2016). The impacts of a toxic invasive prey species (the cane toad, Rhinella marina) on a vulnerable predator (the lace monitor, Varanus varius). Biological Invasions , .
The impacts of a toxic invasive prey species (the cane toad, Rhinella marina) on a vulnerable predator (the lace monitor, Varanus varius).CrossRef |

Kroenke, L. W. (1984). Cenozoic tectonic development of the Southwest Pacific. United Nations Economic and Social Commission, Committee for Co-Ordination of Joint Prospecting for Mineral Resources in South Pacific Offshore Areas (CCOP/SOPAC). Technical Bulletin No. 6.

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.CrossRef | 1:CAS:528:DC%2BC28XhsF2ltrzN&md5=e641bd16830e61c55c5b80cb4abceb77CAS |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.CrossRef | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=14af041c4a8c91b02188c3df40f7fab4CAS |

Lescure, J (2015). René-Primevére LESSON (1794–1849), pharmacien de la Marine, voyageur-naturaliste et herpétologiste. Bulletin Societe Herpetologique de France 155, 1–50.

Lesson, R. P. (1830). Monitor douarrha in Duperrey, L. I. Voyage autour du monde, exécuté par ordre du Roi, sur la corvette de Sa Majesté, La Coquille, pendant les années 1822, 1823, 1824 et 1825. Zoologie 2, 53–54.

Mayr, E., and Diamond, J. M. (2001). ‘The Birds of Northern Melanesia.’ (Harvard University Press: Cambridge, MA.)

Mertens, R. (1926). Ǖber die rassen einiger indo-autralischer reptilien. Senckenbergiana 8, 272–279.

Mertens, R. (1942). Die familie der Warane (Varanidae) 3. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 466, 235–391.

Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., Chan, L., Hoover, P., and Warnow, T. (2009). The CIPRES Portals.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA’. pp. 1–8.

Philipp, K. M., Böhme, W., and Ziegler, T. (1999). The identity of Varanus indicus: redefinition and description of a sibling species coexisting at the type locality. Spixiana 22, 273–287.

Philipp, K. M., Ziegler, T., and Böhme, W. (2007). Preliminary investigations of the natural diet of six monitor lizard species of the Varanus (Euprepiosaurus) indicus group. In ‘Advances in Monitor Research 3’. (Eds H.-G. Horn, W. Böhme, and U. Krebs.) Mertensiella 16, 336–345.

Polhemus, D. A. (2007). Tectonic geology of Papua. In ‘Ecology of Papua, Part 1’. (Eds A. J. Marshall, and B. M. Beehler.) pp. 137–164. (Periplus Editions (HK) Ltd: Singapore.)

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.CrossRef | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=5ec4a881be093ae7a1713945261fe1d2CAS |

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer

Richards, S. J. (2011). Herpetofauna of the Nakanai mountains, east New Britain Province, Papua New Guinea. In ‘Rapid Biological Assessments of the Nakanai Mountains and the Upper Strickland Basin: Surveying the Biodiversity of Papua New Guinea’s Sublime Karst Environments’. (Eds S. J. Richards, and B. G. Gamui.) RAP Bulletin of Biological Assessment 60, 75–80. (Conservation International: Arlington, VA.)

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.CrossRef | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=87d2c6192a6216402b977de4474be89cCAS |

Shearman, P. L., Bryan, J. E., Ash, J., Hunman, P. O., Mackey, B., and Lokes, B. (2008). ‘The State of the Forests of Papua New Guinea: Mapping the Extent and Condition of Forest Cover and Measuring the Drivers of Forest Change in the Period 1972–2002.’ (University of Papua New Guinea: Port Moresby.)

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.CrossRef | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=cab78d1676c58ee0cda9708ab065d288CAS |

Steadman, D. W., White, J. P., and Allen, J. (1999). Prehistoric birds from New Ireland, Papua New Guinea: extinctions on a large Melanesian island. Proceedings of the National Academy of Sciences of the United States of America 96, 2563–2568.
Prehistoric birds from New Ireland, Papua New Guinea: extinctions on a large Melanesian island.CrossRef | 1:CAS:528:DyaK1MXhvVWjsrw%3D&md5=4f33e4b634b2beda0b2146e8da13609dCAS |

Stewart, W. D., and Sandy, M. J. (1988). Geology of New Ireland and Djaul Islands, northeastern Papua New Guinea. In ‘Geology and Offshore Resources of Pacific Island Arcs – New Ireland and Manus Region, Papua New Guinea’. (Eds M. S. Marlow, S. V. Dadisman, and N. F. Exon.) pp. 13–30. Earth Science Series, Vol. 9. (Circum-Pacific Council for Energy and Mineral Resources: Houston, TX.)

Tamura, K., Petersod, D., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.CrossRef | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=2e26a85d4444a96ecf9e43e64d4328a6CAS |

Taylor, B. (1979). Bismarck Sea: evolution of a back-arc basin. Geology 7, 171–174.
Bismarck Sea: evolution of a back-arc basin.CrossRef |

Vidal, N., Marin, J., Sassi, J., Battistuzzi, F. U., Donnellan, S., Fitch, A. J., Fry, B. G., Vonk, F. J., de la Vega, R. C. R., Coloux, A., and Hedges, S. B. (2012). Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biology Letters 8, 853–855.
Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia.CrossRef |

Wei, X., McCune, B., Lumbsch, H. T., Li, H., Leavitt, S., Yamamoto, Y., Tchabanenko, S., and Wei, J. (2016). Limitations of species delimitation based on phylogenetic analyses: a case study in the Hypogymnia hypotrypa group (Parmeliaceae, Ascomycota). PLoS ONE 11, e0163664.
Limitations of species delimitation based on phylogenetic analyses: a case study in the Hypogymnia hypotrypa group (Parmeliaceae, Ascomycota).CrossRef |

Weijola, V. S.-Å. (2010). Geographical distribution and habitat use of monitor lizards of the north Moluccas. Biawak 4, 7–23.

Weijola, V. S.-Å., and Sweet, S. S. (2010). A new melanistic species of monitor lizard (Reptilia: Squamata: Varanidae) from Sanana Island, Indonesia. Zootaxa 2434, 17–32.

Weijola, V., and Sweet, S. S. (2015). A single species of mangrove monitor (Varanus) occupies Ambon, Seram, Buru and Saparua, Moluccas, Indonesia. Amphibian & Reptile Conservation 9, 14–23.

Weijola, V., Donnellan, S. C., and Lindqvist, C. (2016). A new blue-tailed monitor lizard (Reptilia, Squamata, Varanus) from Mussau Island, Papua New Guinea. ZooKeys 568, 129–154.
A new blue-tailed monitor lizard (Reptilia, Squamata, Varanus) from Mussau Island, Papua New Guinea.CrossRef |

Welton, L. J., Travers, S. L., Siler, C. D., and Brown, R. M. (2014). Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator complex) with descriptions of two new cryptic species. Zootaxa 3881, 201–227.
Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator complex) with descriptions of two new cryptic species.CrossRef |

Zhang, J. J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.CrossRef | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=30c750fc2305693a8d5cfa8690206c1eCAS |

Ziegler, T., Philipp, K. M., and Böhme, W. (1999). Zum Artstatus und zur Genitalmorphologie von Varanus finschi Böhme, Horn et Ziegler, 1994, mit neuen Verbreitungsangaben für V. finschi und V. doreanus (Meyer, 1874) (Reptilia: Sauria: Varanidae). Zoologische Abhandlungen 17, 267–279.

Ziegler, T., Schmitz, A., Koch, A., and Böhme, W. (2007). A review of the subgenus Euprepiosaurus of Varanus (Squamata: Varanidae): morphological and molecular phylogeny, distribution and zoogeography, with an identification key for the members of the V. indicus and the V. prasinus species groups. Zootaxa 1472, 1–28.



Rent Article (via Deepdyve) Export Citation

View Altmetrics