Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW (Open Access)

How Australian mammals contributed to our understanding of sex determination and sex chromosomes

Jennifer A. Marshall Graves
+ Author Affiliations
- Author Affiliations

School of Life Sciences, La Trobe University, Melbourne, Vic. 3186, Australia, and Research School of Biology, Australian National University, Canberra, ACT 0200, Australia. Email: j.graves@latrobe.edu.au

Australian Journal of Zoology 64(4) 267-276 https://doi.org/10.1071/ZO16054
Submitted: 7 August 2016  Accepted: 21 October 2016   Published: 2 December 2016

Abstract

Marsupials and monotremes can be thought of as independent experiments in mammalian evolution. The discovery of the human male-determining gene, SRY, how it works, how it evolved and defined our sex chromosomes, well illustrates the value of comparing distantly related animals and the folly of relying on humans and mice for an understanding of the most fundamental aspects of mammalian biology. The 25th anniversary of the discovery of SRY seems a good time to review the contributions of Australian mammals to these discoveries.

The discovery of the mammalian sex determining gene, SRY, was a milestone in the history of human genetics. SRY opened up investigations into the pathway by which the genital ridge (bipotential gonad) becomes a testis. Studies of Australian mammals were important in the story of the discovery of SRY, not only in refuting the qualifications of the first candidate sex-determining gene, but also in confirming the ubiquity of SRY and raising questions as to how it works. Studies in marsupials also led to understanding of how SRY evolved from a gene on an autosome with functions in the brain and germ cells, and to identifying the ancestors of other genes on the human Y. The discovery that platypus have sex chromosomes homologous, not to the human XY, but to the bird ZW, dated the origin of the therian SRY and the XY chromosomes it defined. This led to important new models of how our sex chromosomes function, how they evolved, and what might befall this gene and the Y chromosome it defines.


References

Affara, N. A.,, et al (1987). Mapping the testis determinants by an analysis of Y-specific sequences in males with apparent XX and XO karyotypes and females with XY karyotypes. Nucleic Acids Research 15, 7325–7342.
Mapping the testis determinants by an analysis of Y-specific sequences in males with apparent XX and XO karyotypes and females with XY karyotypes.CrossRef | 1:CAS:528:DyaL2sXls12qsrY%3D&md5=e28d50ae18e0072acea1f3d7901c354dCAS |

Aitken, R. J., and Graves, J. A. M. (2002). The future of sex. Nature 415, 963.
The future of sex.CrossRef | 1:CAS:528:DC%2BD38Xhsl2ltL8%3D&md5=d8012e392dc4d86027af6b93672121afCAS |

Avilion, A. A.,, et al (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development 17, 126–140.
Multipotent cell lineages in early mouse development depend on SOX2 function.CrossRef | 1:CAS:528:DC%2BD3sXktlKqtg%3D%3D&md5=63c6c17d666b80a2ecae48562c90bdddCAS |

Bellott, D. W.,, et al (2014). Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499.
Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators.CrossRef | 1:CAS:528:DC%2BC2cXmslaktbg%3D&md5=6b046b635e0f727dc58100561764f6ccCAS |

Berta, P.,, et al (1990). Genetic evidence equating SRY and the testis-determining factor. Nature 348, 448–450.
Genetic evidence equating SRY and the testis-determining factor.CrossRef | 1:CAS:528:DyaK3MXhvVOnsg%3D%3D&md5=cf6723f289c373c790d8bda4cb3ebfceCAS |

Bridges, C. B. (1925). Sex in relation to chromosomes and genes. American Naturalist 59, 127–137.
Sex in relation to chromosomes and genes.CrossRef |

Calvari, V.,, et al (2000). A new submicroscopic deletion that refines the 9p region for sex reversal. Genomics 65, 203–212.
A new submicroscopic deletion that refines the 9p region for sex reversal.CrossRef | 1:CAS:528:DC%2BD3cXktFarsr4%3D&md5=aea3aba18e8b8c588bc50fc06adb0a2bCAS |

Charlesworth, B. (1991). The evolution of sex chromosomes. Science 251, 1030–1033.
The evolution of sex chromosomes.CrossRef | 1:STN:280:DyaK3M7kvF2jtw%3D%3D&md5=b60cc263c65280411f5322150429217aCAS |

Chen, S.,, et al (2014). Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics 46, 253–260.
Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle.CrossRef | 1:CAS:528:DC%2BC2cXhs1Snu7k%3D&md5=e4fa5103366092925309c2192f7a192cCAS |

Delbridge, M. L.,, et al (1999). The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nature Genetics 22, 223–224.
The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome.CrossRef | 1:CAS:528:DyaK1MXkt1eqsLg%3D&md5=73305735d5d252264b911b79af17524aCAS |

Delbridge, M. L.,, et al (2004). TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X – implications for Y chromosome evolution. Chromosome Research 12, 345–356.
TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X – implications for Y chromosome evolution.CrossRef | 1:CAS:528:DC%2BD2cXlsVOmt7c%3D&md5=fdda059c582301107242523346290868CAS |

Delgado, C. L. R.,, et al (2009). Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosome Research 17, 917–926.
Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years.CrossRef |

Eggers, S., Ohnesorg, T., and Sinclair, A. (2014). Genetic regulation of mammalian gonad development. Nature Reviews: Endocrinology 10, 673–683.
Genetic regulation of mammalian gonad development.CrossRef | 1:CAS:528:DC%2BC2cXhsFyksrfE&md5=37627ca9d11ad74c03c7dcbe92cb1339CAS |

Ezaz, T.,, et al (2009). The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Research 17, 965–973.
The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds.CrossRef | 1:CAS:528:DC%2BD1MXhsFGrurbI&md5=b85be7250d39c0c2b74e897515e73488CAS |

Ford, C. E.,, et al (1959). A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet 273, 711–713.
A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome).CrossRef |

Foster, J. W., and Graves, J. A. M. (1994). An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proceedings of the National Academy of Sciences of the United States of America 91, 1927–1931.
An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene.CrossRef | 1:CAS:528:DyaK2cXivFWisr0%3D&md5=4d1cd1aab2c130e1f7f1e5fd763e6406CAS |

Foster, J. W.,, et al (1992). Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531–533.
Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials.CrossRef | 1:CAS:528:DyaK3sXltlamt70%3D&md5=e73bcd86a0f8b650ad617f8f8a99302dCAS |

Foster, J. W.,, et al (1994). Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530.
Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene.CrossRef | 1:CAS:528:DyaK2MXisFKkt7k%3D&md5=20b70c55b8d6f383ed999b4e4077605aCAS |

Graves, J. A. M. (2006). Sex chromosome specialization and degeneration in mammals. Cell 124, 901–914.
Sex chromosome specialization and degeneration in mammals.CrossRef |

Graves, J. A. M. (2013). How to evolve new vertebrate sex determining genes. Developmental Dynamics 242, 354–359.
How to evolve new vertebrate sex determining genes.CrossRef |

Graves, J. A. M. (2015). Evolution of vertebrate sex chromosomes and dosage compensation. Nature Reviews. Genetics 17, 33–46.
Evolution of vertebrate sex chromosomes and dosage compensation.CrossRef |

Graves, J. A. M. (2016). Sex chromosome turnover and mammalian divergence. BioEssays 38, 734–743.
Sex chromosome turnover and mammalian divergence.CrossRef | 1:CAS:528:DC%2BC28XhtF2ntr%2FN&md5=45cb7e7727833e8b52a5a5a8213a93e9CAS |

Grutzner, F.,, et al (2004). In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917.
In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes.CrossRef |

Gubbay, J.,, et al (1990a). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250.
A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes.CrossRef | 1:CAS:528:DyaK3cXkvFaltrk%3D&md5=d72a5608d0da069cafa02108c1c5e249CAS |

Gubbay, J.,, et al (1990b). Normal structure and expression of Zfy genes in XY female mice mutant in Tdy. Development 109, 647–653.
| 1:CAS:528:DyaK3cXlvVGrsLw%3D&md5=24da45bddc86b0c81fe81a4f284b3e76CAS |

Harley, V. R., and Goodfellow, P. N. (1994). The biochemical role of SRY in sex determination. Molecular Reproduction and Development 39, 184–193.
The biochemical role of SRY in sex determination.CrossRef | 1:CAS:528:DyaK2MXht1aktbw%3D&md5=057e64ab11ed004e6a43555d476a0750CAS |

Hughes, J. F., and Rozen, S. (2012). Genomics and genetics of human and primate Y chromosomes. Annual Review of Genomics and Human Genetics 13, 83–108.
Genomics and genetics of human and primate Y chromosomes.CrossRef | 1:CAS:528:DC%2BC38XhsVGit77P&md5=1b9996b0c191ace3ba549a3bae45ff4eCAS |

Jacobs, P. A., and Strong, J. A. (1959). A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183, 302–303.
A case of human intersexuality having a possible XXY sex-determining mechanism.CrossRef | 1:STN:280:DyaG1M%2Fmt1aqug%3D%3D&md5=241fab6728bdc4615556216c56e4a1e0CAS |

Jost, A. (1970). Hormonal factors in the sex differentiation of the mammalian foetus. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 259, 119–131.
Hormonal factors in the sex differentiation of the mammalian foetus.CrossRef | 1:STN:280:DyaE38%2FjsFSmuw%3D%3D&md5=132f61b2e467548f02c63e5605f30479CAS |

Just, W.,, et al (1995). Absence of Sry in species of the vole Ellobius. Nature Genetics 11, 117–118.
Absence of Sry in species of the vole Ellobius.CrossRef | 1:CAS:528:DyaK2MXosF2rsbo%3D&md5=6059cdec03f00d148d6959f8906fd39eCAS |

Kikuchi, K., and Hamaguchi, S. (2013). Novel sex-determining genes in fish and sex chromosome evolution. Developmental Dynamics 242, 339–353.
Novel sex-determining genes in fish and sex chromosome evolution.CrossRef | 1:CAS:528:DC%2BC3sXksFWhtb8%3D&md5=940bca2e3430b7c92616cfeec7115d63CAS |

Koopman, P.,, et al (1989). Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature 342, 940–942.
Zfy gene expression patterns are not compatible with a primary role in mouse sex determination.CrossRef | 1:CAS:528:DyaK3cXpt12ksw%3D%3D&md5=5e28b90d411d04787c518626a486586cCAS |

Koopman, P.,, et al (1991). Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121.
Male development of chromosomally female mice transgenic for Sry.CrossRef | 1:CAS:528:DyaK3MXktVagsrk%3D&md5=0624619e1faf10c0c387837140221c20CAS |

Kuroiwa, A.,, et al (2010). The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma 119, 519–526.
The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat.CrossRef |

Lahn, B., and Page, D. C. (1997). Functional coherence of the human Y chromosome. Science 278, 675–680.
Functional coherence of the human Y chromosome.CrossRef | 1:CAS:528:DyaK2sXmvVygu70%3D&md5=957356daed5492a32ddd6f678d917afeCAS |

Luo, Z. X.,, et al (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–445.
A Jurassic eutherian mammal and divergence of marsupials and placentals.CrossRef | 1:CAS:528:DC%2BC3MXhtVOnu7jO&md5=02fe6a3dee4dc95b8bee8d6264792c0aCAS |

Lyon, M. F., and Hawkes, S. G. (1970). X-linked gene for testicular feminization in the mouse. Nature 227, 1217–1219.
X-linked gene for testicular feminization in the mouse.CrossRef | 1:STN:280:DyaE3c3ntVSmsA%3D%3D&md5=a9f608cb065673cf4303da781fd47c38CAS |

Meyers-Wallen, V. N.,, et al (1999). Sry-negative XX sex reversal in purebred dogs. Molecular Reproduction and Development 53, 266–273.
Sry-negative XX sex reversal in purebred dogs.CrossRef | 1:CAS:528:DyaK1MXjsFGhtb4%3D&md5=1b4e6f6b3bd5c219b22b2f8f2717e0c7CAS |

Migeon, B. R.,, et al (1981). Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. Proceedings of the National Academy of Sciences of the United States of America 78, 6339–6343.
Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse.CrossRef | 1:CAS:528:DyaL3MXmtVWgsrg%3D&md5=3615cc97d0a09526d7735322a8e84bfaCAS |

Murtagh, V. J.,, et al (2012). Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution. Genome Research 22, 498–507.
Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution.CrossRef | 1:CAS:528:DC%2BC38XjsV2lsb0%3D&md5=443b6c43315b0b7aa56671dcf6d7f92cCAS |

Nanda, I.,, et al (1999). 300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genetics 21, 258–259.
300 million years of conserved synteny between chicken Z and human chromosome 9.CrossRef | 1:CAS:528:DyaK1MXitVCit7k%3D&md5=76ab5a2dc83c6639719812e33b405255CAS |

Ohno, S. 1967. ‘Sex Chromosomes and Sex Linked Genes.’ (Springer-Verlag: New York.)

Ohno, S. (1978). The role of H-Y antigen in primary sex determination. Journal of the American Medical Association 239, 217–220.
The role of H-Y antigen in primary sex determination.CrossRef | 1:STN:280:DyaE1c%2FmvFGhtQ%3D%3D&md5=3d4f7af2d7ad485fb8c31c7d9c4f16dcCAS |

Page, D. C.,, et al (1987). The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 1091–1104.
The sex-determining region of the human Y chromosome encodes a finger protein.CrossRef | 1:CAS:528:DyaL1cXntVSiuw%3D%3D&md5=32f3232ffeee8d4edf0500991bfe0e3cCAS |

Pailhoux, E.,, et al (2002). Ontogenesis of female-to-male sex-reversal in XX polled goats. Developmental Dynamics 224, 39–50.
Ontogenesis of female-to-male sex-reversal in XX polled goats.CrossRef | 1:CAS:528:DC%2BD38XktlCisLs%3D&md5=382dce2784b7fa1b0595dbd691c8116cCAS |

Parma, P.,, et al (2006). R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nature Genetics 38, 1304–1309.
R-spondin1 is essential in sex determination, skin differentiation and malignancy.CrossRef | 1:CAS:528:DC%2BD28XhtFeisbjF&md5=6503d62ee1ae175e7686ddf41bea7193CAS |

Pask, A., Renfree, M. B., and Graves, J. A. M. (2000). The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. Proceedings of the National Academy of Sciences of the United States of America 97, 13198–13202.
The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination.CrossRef | 1:CAS:528:DC%2BD3cXosVKqurY%3D&md5=91662c6f8a176dda4ef9deca0a3782cfCAS |

Raymond, C. S.,, et al (1998). Evidence for evolutionary conservation of sex-determining genes. Nature 391, 691–695.
Evidence for evolutionary conservation of sex-determining genes.CrossRef | 1:CAS:528:DyaK1cXht1GmtLw%3D&md5=da453ecaf41715562de6d88f075c4a2aCAS |

Raymond, C. S.,, et al (1999). A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Human Molecular Genetics 8, 989–996.
A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators.CrossRef | 1:CAS:528:DyaK1MXjs1WntLg%3D&md5=0fe7c0e4c04e4a38c458a98460e85e4aCAS |

Sekido, R., and Lovell-Badge, R. (2013). Genetic control of testis development. Sexual Development: Genetics, Molecular Biology, Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and Differentiation 7, 21–32.
Genetic control of testis development.CrossRef | 1:CAS:528:DC%2BC38XhvVClsb3J&md5=409ff1da9f7e402a312e675ab8e644f4CAS |

Simpson, E.,, et al (1987). Separation of the genetic loci for the H-Y antigen and for testis determination on human Y chromosome. Nature 326, 876–878.
Separation of the genetic loci for the H-Y antigen and for testis determination on human Y chromosome.CrossRef | 1:CAS:528:DyaL2sXktVGnsbc%3D&md5=6e78372cc70371506c3aa2e778537f2cCAS |

Sinclair, A. H.,, et al (1988). Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336, 780–783.
Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials.CrossRef | 1:CAS:528:DyaL1MXovFOjtw%3D%3D&md5=ee9e3b9b9e0bc37b24981ca62b47b459CAS |

Sinclair, A. H.,, et al (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.
A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.CrossRef | 1:CAS:528:DyaK3cXkvFaltrg%3D&md5=ad0faf0d3b7fb940e95ba592cd08af75CAS |

Singh, L.,, et al (1994). Banded krait minor-satellite (Bkm)-associated Y chromosome-specific repetitive DNA in mouse. Nucleic Acids Research 22, 2289–2295.
Banded krait minor-satellite (Bkm)-associated Y chromosome-specific repetitive DNA in mouse.CrossRef | 1:CAS:528:DyaK2cXlt1Klsb4%3D&md5=d1636318ff4b74cb176fb398c9c732a7CAS |

Smith, C. A.,, et al (1999). Conservation of a sex-determining gene. Nature 402, 601–602.
Conservation of a sex-determining gene.CrossRef | 1:CAS:528:DC%2BD3cXjsVCm&md5=f10a1d98624936d22d2a06c09aec0acdCAS |

Smith, C. A.,, et al (2009). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461, 267–271.
The avian Z-linked gene DMRT1 is required for male sex determination in the chicken.CrossRef | 1:CAS:528:DC%2BD1MXhtVGiurvN&md5=07c3ba3db278e38efb906a485b63701bCAS |

Sutton, E.,, et al (2011). Identification of SOX3 as an XX male sex reversal gene in mice and humans. The Journal of Clinical Investigation 121, 328–341.
Identification of SOX3 as an XX male sex reversal gene in mice and humans.CrossRef | 1:CAS:528:DC%2BC3MXis1ylsA%3D%3D&md5=800432feb553402b0c42b79e72a637f4CAS |

Tsend-Ayush, E.,, et al (2005). RBMX gene is essential for brain development in zebrafish. Developmental Dynamics 234, 682–688.
RBMX gene is essential for brain development in zebrafish.CrossRef | 1:CAS:528:DC%2BD2MXht1Cru7%2FJ&md5=d25d7cfb22102728527d2546b9c9cbe1CAS |

Veyrunes, F.,, et al (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Research 18, 965–973.
Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.CrossRef | 1:CAS:528:DC%2BD1cXnsVygsbY%3D&md5=d58ebbe0971088ca8e955df58017baa2CAS |

Wagner, T.,, et al (1994). Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120.
Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9.CrossRef | 1:STN:280:DyaK2M%2FpsVaktg%3D%3D&md5=25658ced6ee53cb5fb0b1ab1f36a66daCAS |

Wallis, M. C.,, et al (2007). Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Research 15, 949–959.
Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes.CrossRef | 1:CAS:528:DC%2BD1cXkslWrsA%3D%3D&md5=f76537d5694ab2fe93ecdd4903724ef1CAS |

Waters, P. D.,, et al (2005). Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution. Chromosome Research 13, 401–410.
Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.CrossRef | 1:CAS:528:DC%2BD2MXltl2mtLY%3D&md5=1b9e281c9f24d444a60a8ab5991d0669CAS |

Wilcox, S. A., Watson, J. M., Spencer, J. A., and Graves, J. A. M. (1996). Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement. Genomics 35, 66–70.
| 1:CAS:528:DyaK28Xkt12qs7c%3D&md5=0ce51b0e8eba5fe881cf9270b533ab47CAS |

Wilhelm, D., Yang, J. X., and Thomas, P. (2013). Mammalian sex determination and gonad development. Current Topics in Developmental Biology 106, 89–121.
Mammalian sex determination and gonad development.CrossRef | 1:CAS:528:DC%2BC2cXktlertr0%3D&md5=d36665a283552732b10a95a0f27fbb95CAS |

Yamauchi, Y.,, et al (2016). Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 351, 514–516.
Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction.CrossRef | 1:CAS:528:DC%2BC28XhtlyntLc%3D&md5=54b20b140919b1b3153c6b0b7fd93741CAS |


Full Text PDF (599 KB) Export Citation