Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Antimony in the environment: knowns and unknowns

Montserrat Filella A B E , Peter A. Williams C and Nelson Belzile D

A Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.

B SCHEMA, Rue Principale 92, L-6990 Rameldange, Luxembourg.

C School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia.

D Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.

E Corresponding author. Email: montserrat.filella@unige.ch

Environmental Chemistry 6(2) 95-105 http://dx.doi.org/10.1071/EN09007
Submitted: 5 January 2009  Accepted: 5 March 2009   Published: 27 April 2009

Environmental context. Antimony first attracted public attention in the mid-1990s amid claims that it was involved in Sudden Infant Death Syndrome. A substantial number of papers have now been published on the element and its behaviour in the natural environment. However, many key aspects of the environmental chemistry of antimony remain poorly understood. These include critical areas such as its ecotoxicology, its global cycling through different environmental compartments, and what chemical form it takes in different environments. More focussed research would help the situation. The present review highlights several areas of environmental antimony chemistry that urgently need to be addressed.

Abstract. The objective of the present article is to present a critical overview of issues related to the current state of knowledge on the behaviour of antimony in the environment. It makes no attempt to systematically review all published data. However, it does provide a list of the main published reviews on antimony and identifies subjects where systematic reviews are needed. Areas where our knowledge is strong – and the corresponding gaps – in subjects ranging from total concentrations and speciation in the various environmental compartments, to ecotoxicity, to cycling between compartments, are discussed, along with the underlying research. Determining total antimony no longer poses a problem for most environmental samples but speciation measurements remain challenging throughout the process, from sampling to analysis. This means that the analytical tools still need to be improved but experience shows that, to be useful in practice, this should be directly driven by the requirements of laboratory and field measurements. Many different issues can be identified where further research is required, both in the laboratory and in the field, the most urgently needed studies probably being: (i) long-term spatial and temporal studies in the different environmental compartments in order to collect the data needed to establish a global biogeochemical cycle; (ii) laboratory studies of antimony interactions with potential natural binders; (iii) reliable ecotoxicological studies.


[1]  Petticrew M.2003Why certain systematic reviews reach uncertain conclusions.BMJ326756doi:10.1136/BMJ.326.7392.756

[2]  Filella M.Belzile N.Chen Y.-W.2002Antimony in the environment: a review focused on natural waters I. Occurrence.Earth Sci. Rev.57125doi:10.1016/S0012-8252(01)00070-8

[3]  Austin L. S.Millward G. E.1988Simulated effects of tropospheric emissions on the global antimony cycle.Atmos. Environ.221395doi:10.1016/0004-6981(88)90164-3

[4]  Nash M. J.Maskall J. E.Hill S. J.2000Methodologies for determination of antimony in terrestrial environmental samples.J. Environ. Monit.297doi:10.1039/A907875D

[5]  Smichowski P.2008Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols.Talanta752doi:10.1016/J.TALANTA.2007.11.005

[6]  Shotyk W.Krachler M.Chen B.Zheng J.2005Natural abundance of Sb and Se in pristine groundwaters, Springwater Township, Ontario, Canada, and implications for tracing contamination from landfill leachates.J. Environ. Monit.71238doi:10.1039/B509352J

[7]  Hansen H. R.Pergantis S. A.2008Analytical techniques and methods used for antimony speciation analysis in biological matrices.J. Anal. At. Spectrom.231328doi:10.1039/B807599A

[8]  Shotyk W.Krachler M.Chen B.2006Contamination of Canadian and European bottled waters with antimony from PET containers.J. Environ. Monit.8288doi:10.1039/B517844B

[9]  Hansen H. R.Pergantis S. A.2006Detection of antimony species in citrus juices and drinking water stored in PET containers.J. Anal. At. Spectrom.21731doi:10.1039/B606367E

[10]  Fordham P. J.Gramshaw J. W.Crews H. M.Castle L.1995Element residues in food contact plastics and their migration into food simulants, measured by inductively-coupled plasma–mass spectrometry.Food Addit. Contam.12651

[11]  Haldimann M.Blanc A.Dudler V.2007Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals.Food Addit. Contam.24860

[12]  Shotyk W.1996Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic minerotrophic peat bog profiles, Jura Mountains, Switzerland.Water Air Soil Pollut.90375doi:10.1007/BF00282657

[13]  Shotyk W.Cheburkin A. K.Appleby P. G.Fankhauser A.Kramers J. D.1996Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland.Earth Planet. Sci. Lett.145E1doi:10.1016/S0012-821X(96)00197-5

[14]  Shotyk W.Krachler M.Chen B.2004Antimony in recent, ombrotrophic peat from Switzerland and Scotland: comparison with natural background values (5320 to 8020 14C yr BP) and implications for the global Sb cycle.Global Biogeochem. Cycles18GB1016doi:10.1029/2003GB002113

[15]  Cloy J. M.Farmer J. G.Graham M. C.MacKenzie A. B.Cook G. T.2005A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombotrophic peat bog, Scotland.J. Environ. Monit.71137doi:10.1039/B510987F

[16]  Shotyk W.Chen B.Krachler M.2005Lithogenic, oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog, Myrarnar, Faroe Islands.J. Environ. Monit.71148doi:10.1039/B509928P

[17]  Nirel P.Filella M.2008Dissolved antimony concentrations in contrasted watersheds: the importance of lithogenic origin.J. Environ. Monit.10256doi:10.1039/B716296K

[18]  Pitman A. L., Pourbaix M., de Zoubov N., Comportement Électrochimique de l’Antimoine. Rapport Technique, Report No. 55 1957 (CEBELCOR: Brussels, Belgium).

[19]  Holland H. D.1959Some applications of thermochemical data to problems of ore deposits. I. Stability relations among the oxides, sulfides, sulfates and carbonates of ore and gangue minerals.Econ. Geol.54184

[20]  Brookins D. G.1986Geochemical behaviour of antimony, arsenic, cadmium and thallium: Eh–pH diagrams for 25°C, 1-bar pressure.Chem. Geol.54271

[21]  Brookins D. G., Eh-pH Diagrams for Geochemistry 1988 (Springer: Berlin).

[22]  Vink B. W.1996Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams.Chem. Geol.13021doi:10.1016/0009-2541(95)00183-2

[23]  Williams-Jones A. E.Normand C.1997Controls on mineral parageneses in the system Fe–Sb–S–O.Econ. Geol.92308

[24]  Krupka K. M., Serne R. J., Geochemical Factors Affecting the Behaviour of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Report PNNL-14126 2002 (US Department of Energy, Pacific Northwest National Laboratory: Richland, WA).

[25]  Bryndzia L. T.Kleppa O. J.1988High temperature reaction calorimetry of solid and liquid phases in part of the quasi-binary system Cu2S–Sb2S3.Am. Mineral.73707

[26]  Seal R. R.IIRobie R. A.Hemingway B. S.Barton P. B.Jr1992Superambient heat capacities of synthetic stibnite, berthierite and chalcostibite: revised thermodynamic properties and implications for phase equilibria.Econ. Geol.871911

[27]  Babčan J.1976Enstehung und Stabilität von Antimonmineralen im System Sb3+–S2––H+–OH–.Chem. Erde35281

[28]  Zotov A. V.Shikina N. D.Akinfiev N. N.2003Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions.Geochim. Cosmochim. Acta671821

[29]  Wagman D. D.Evans W. H.Parker V. B.Schumm R. H.Halow I.Bailey S. M.Churney K. I.Nuttall R. I.1982The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units.J. Phys. Chem. Ref. Data11Suppl. 21

[30]  Pankajavalli R.Sreedharan O. M.1987Thermodynamic stability of Sb2O4 by a solid oxide electrolyte EMF method.J. Mater. Sci.22177

[31]  Blandamer M. J.Burgess J.Peacock R. D.1974Solubility of sodium hexahydroxoantimonate in water and in mixed aqueous solvents.J. Chem. Soc., Dalton Trans.1084doi:10.1039/DT9740001084

[32]  Diemar G. A., Filella M., Leverett P., Williams P. A., Dispersion of antimony from oxidizing ore deposits. Pure Appl. Chem., in press.

[33]  Robie R. A.Hemmingway B. S.1995Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures.U.S. Geol. Surv. Bull.21311

[34]  Past V., Antimony, in Standard Potentials in Aqueous Solution (Eds A. J. Bard, R. Parsons, J. Jordan) 1985, pp. 172–179 (Marcel Dekker: New York).

[35]  Baes C. F.Jr, Mesmer R. E., The Hydrolysis of Cations 1976 (Wiley Interscience: New York).

[36]  Accornero M.Marini L.Lelli M.2008The dissociation constant of antimonic acid at 10–40°C.J. Sol. Chem.37785

[37]  Barin I., Thermochemical Data of Pure Substances. Part II 1989 (VCH Publishers: Weinheim).

[38]  Jansen M.1979Die Kristallstruktur von Antimon(V)-Oxid.Acta Crystallogr.B35539

[39]  Johnson C. A.Moench H.Wersin P.Kugler P.Wenger C.2005Solubility of antimony and other elements in samples taken from shooting ranges.J. Environ. Qual.34248

[40]  Vitaliano C. J.Mason B.1952Stibiconite and cervantite.Am. Mineral.37982

[41]  Rouxel O.Ludden J.Fouquet Y.2003Antimony isotope variations in natural systems and implications for their use as geochemical tracers.Chem. Geol.20025

[42]  Cutter G. A.Cutter L. S.2006Biogeochemistry of arsenic and antimony in the North Pacific Ocean.Geochem. Geophys. Geosyst.7Q05M08doi:10.1029/2005GC001159

[43]  Chen Y.-W.Deng T.-L.Filella M.Belzile N.2003Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes.Environ. Sci. Technol.371163doi:10.1021/ES025931K

[44]  Hansen H. R.Pergantis S. A.2007Identification of Sb(V) complexes in biological and food matrixes and their stibine formation efficiency during Hydride Generation with ICPMS detection.Anal. Chem.795304doi:10.1021/AC070130R

[45]  Hansen H. R.Pergantis S. A.2006Investigating the formation of an Sb(V)–citrate complex by HPLC-ICPMS and HPLC-ES-MS(/MS).J. Anal. At. Spectrom.211240doi:10.1039/B607621A

[46]  Wehmeier S.Raab A.Feldmann J.2004Investigations into the role of methylcobalamin and glutathione for the methylation of antimony using isotopically enriched antimony(V).Appl. Organomet. Chem.18631doi:10.1002/AOC.692

[47]  Filella M.Belzile N.Chen Y.-W.2002Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry.Earth Sci. Rev.59265doi:10.1016/S0012-8252(02)00089-2

[48]  Gerritse R. G.Vriesema R.Dalenberg J. W.de Roos H. P.1982Effect of sewage sludge on trace element mobility in soils.J. Environ. Qual.11359

[49]  Ainsworth N.Cooke J. A.Johnson M. S.1991Biological significance of antimony in contaminated grassland.Water Air Soil Pollut.57–58193

[50]  Hammel W.Debus R.Steubing L.2000Mobility of antimony in soil and its availability to plants.Chemosphere411791doi:10.1016/S0045-6535(00)00037-0

[51]  Oorts K.Smolders E.Degryse F.Buekers J.Gascó G.Cornelis G.Mertens J.2008Solubility and toxicity of antimony trioxide (Sb2O3) in soil.Environ. Sci. Technol.424378doi:10.1021/ES703061T

[52]  Amereih S.Meisel T.Scholger R.Wegscheider W.2005Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS.J. Environ. Monit.71200doi:10.1039/B510321E

[53]  Ceriotti G.Amarasiriwardena D.2009A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway.Microchem. J.9185doi:10.1016/J.MICROC.2008.08.010

[54]  Milford J. B.Davidson C. I.1985The sizes of particulate trace elements in the atmosphere – a review.J. Air Pollut. Control Assoc.351249

[55]  Pacyna J. M.Pacyna E. G.2001An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide.Environ. Rev.9269

[56]  Sternbeck J.Sjödin A.Andréasson K.2002Metal emissions from road traffic and the influence of resuspension – results from two tunnel studies.Atmos. Environ.364735doi:10.1016/S1352-2310(02)00561-7

[57]  Furuta N.Iijima A.Kambe A.Sakai K.Sato K.2005Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004.J. Environ. Monit.71155doi:10.1039/B513988K

[58]  Hjortenkrans D. S. T.Bergbäck B. G.Häggerud A. V.2007Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005.Environ. Sci. Technol.415224doi:10.1021/ES070198O

[59]  Zheng J.Ohata M.Furuta N.2000Studies on the speciation of inorganic antimony compounds in airborne particulate matter by HPLC-ICP-MS.Analyst1251025doi:10.1039/B002201M

[60]  Zheng J.Iijima A.Furuta N.2001Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-ICP-MS.J. Anal. At. Spectrom.16812doi:10.1039/B101943K

[61]  Filella M.Belzile N.Lett M.-C.2007Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions.Earth Sci. Rev.80195doi:10.1016/J.EARSCIREV.2006.09.003

[62]  Filella M., Alkyl derivatives of antimony in the environment, in Metal Ions in Life Sciences: 7 (Organometallics in Environment and Toxicology) (Eds A. Sigel, H. Sigel, R. K. O. Sigel) (RSC Publishing: Cambridge), in press.

[63]  Duester L.Diaz-Bone R. A.Kösters J.Hirner A. V.2005Methylated arsenic, antimony and tin species in soils.J. Environ. Monit.71186doi:10.1039/B508206D

[64]  Polya D. A.Lythgoe P. R.Abou-Shakra F.Gault A. G.Brydie J. R.Webster J. G.Brown K. L.Nimfopoulos M. K.Michailidis K. M.2003IC–ICP-MS and IC–ICP-HEX-MS determination of arsenic speciation in surface and groundwaters: preservation and analytical issues.Mineral. Mag.67247doi:10.1180/0026461036720098

[65]  McCleskey R. B.Nordstrom D. K.Maest A. S.2004Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results.Appl. Geochem.19995doi:10.1016/J.APGEOCHEM.2004.01.003

[66]  Gillain G.Brihaye C.1985A routine speciation method for a pollution survey of coastal sea water.Oceanol. Acta8231

[67]  Middelburg J. J.Hoede D.Van Der Sloot H. A.Van Der Weijden C. H.Wijkstra J.1988Arsenic, antimony and vanadium in the North Atlantic Ocean.Geochim. Cosmochim. Acta522871

[68]  Garbos S.Bulska E.Hulanicki A.Shcherbinina N. I.Sedykh E. M.1997Preconcentration of inorganic species of antimony by sorption on Polyorgs 31 followed by atomic spectrometry detection.Anal. Chim. Acta342167doi:10.1016/S0003-2670(96)00534-X

[69]  Mohammad B.Ure A. M.Reglinski J.Littlejohn D.1990Speciation of antimony in natural waters: the determination of Sb(III) and Sb(V) by continuous flow hydride generation–atomic absorption spectrometry.Chem. Spec. Bioavail.3117

[70]  Quentel F.Filella M.Elleouet C.Madec C.-L.2004Kinetic studies on Sb(III) oxidation by hydrogen peroxide in natural waters.Environ. Sci. Technol.382843

[71]  Quentel F.Filella M.2002Determination of inorganic antimony species in seawater by DPASV: stability of the trivalent state.Anal. Chim. Acta452237doi:10.1016/S0003-2670(01)01474-X

[72]  Aggett J.Kriegman M. R.1988The extent of formation of arsenic(III) in sediment interstitial waters and its release to hypolimnetic waters in Lake Ohakuri.Water Res.22407doi:10.1016/0043-1354(88)90034-6

[73]  Andreae M. O., Antimony (by hydride generation/AAS), in Methods of Seawater Analysis, 2nd edn (Eds K. Grasshoff, M. Ehrhardt, K. Kremling) 1983, Ch. 10.6.6–10.6.8, pp. 218–236 (Verlag Chemie: Weinheim).

[74]  de la Calle-Guntiñas M. B.Madrid Y.Cámara C.1992Stability study of total antimony, Sb(III) and Sb(V) at the trace level.Fresenius J. Anal. Chem.34427doi:10.1007/BF00324836

[75]  Andreae M. O.Asmode J.-F.Foster P.Van’t Dack L.1981Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation.Anal. Chem.531766doi:10.1021/AC00235A012

[76]  Yamamoto M.Urata K.Yamamoto Y.1981Differential determination of antimony(III) and antimony(V) by hydride generation–atomic absorption spectrophotometry.Anal. Lett.142126

[77]  Potin-Gautier M.Pannier F.Quiroz Q.Pinochet H.de Gregori I.2005Antimony speciation analysis in sediment reference materials using high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry.Anal. Chim. Acta553214

[78]  Takaoka M.Fukutani S.Yamamoto T.Horiuchi M.Satta N.Takeda N.Oshita K.Yoneda M.Morisawa S.Tanaka T.2005Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure.Anal. Sci.21769doi:10.2116/ANALSCI.21.769

[79]  Mitsunobu S.Harada T.Takahashi Y.2006Comparison of antimony behavior with that of arsenic under various soil redox conditions.Environ. Sci. Technol.407270doi:10.1021/ES060694X

[80]  Scheinost A. C.Rossberg A.Vantelon D.Xifra I.Kretzschmar R.Leuz A.-K.Funke H.Johnson C. A.2006Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy.Geochim. Cosmochim. Acta703299doi:10.1016/J.GCA.2006.03.020

[81]  Filella M.May P. M.2003Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.Geochim. Cosmochim. Acta674013doi:10.1016/S0016-7037(03)00095-4

[82]  Filella M.May P. M.2005Critical appraisal of available thermodynamic data for the complexation of antimony(III) and antimony(V) by low-molecular-mass organic ligands.J. Environ. Monit.71226doi:10.1039/B511453E

[83]  Kawamoto Y.Morisawa S.2003The distribution and speciation of antimony in river water, sediment and biota in Yodo River, Japan.Environ. Technol.241349doi:10.1080/09593330309385679

[84]  Watkins R.Weiss D.Dubbin W.Peel K.Coles B.Arnold T.2006Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite (α-FeOOH).J. Colloid Interface Sci.303639doi:10.1016/J.JCIS.2006.08.044

[85]  Lehr C. R.Kashyap D. R.McDermott T. R.2007New insights into microbial oxidation of antimony and arsenic.Appl. Environ. Microbiol.732386doi:10.1128/AEM.02789-06

[86]  Cutter G. A.Cutter L. S.Featherstone A. M.Lohrenz S. E.2001Antimony and arsenic in the western Atlantic Ocean.Deep Sea Res. Part II Top. Stud. Oceanogr.482895doi:10.1016/S0967-0645(01)00023-6

[87]  Ellwood M. J.Maher W. A.2002Arsenic and antimony species in surface transects and depth profiles across a frontal zone: the Chatham Rise, New Zealand.Deep Sea Res. Part I Oceanogr. Res. Pap.4919711doi:10.1016/S0967-0637(02)00115-2

[88]  Buschmann J.Canonica S.Sigg L.2005Photoinduced oxidation of antimony(III) in the presence of humic acid.Environ. Sci. Technol.395335doi:10.1021/ES050269O

[89]  Li S.-X.Zheng F.-Y.Hong H.-S.Deng N.-S.Zhou X.-Y.2006Photooxidation of Sb(III) in the seawater by marine phytoplankton–transition metals–light system.Chemosphere651432doi:10.1016/J.CHEMOSPHERE.2006.04.017

[90]  Belzile N.Chen Y.-W.Wang Z.2001Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides.Chem. Geol.174379doi:10.1016/S0009-2541(00)00287-4

[91]  Leuz A. K.Monch H.Johnson C. A.2006Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.Environ. Sci. Technol.407277doi:10.1021/ES061284B

[92]  Elleouet C.Quentel F.Madec C. L.Filella M.2005The effect of the presence of trace metals on the oxidation of Sb(III) by hydrogen peroxide in aqueous solutions.J. Environ. Monit.71220doi:10.1039/B509802E

[93]  Leuz A. K.Hug S. J.Wehrli B.Johnson C. A.2006Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation.Environ. Sci. Technol.402565doi:10.1021/ES052059H

[94]  Leuz A. K.Johnson C. A.2005Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions.Geochim. Cosmochim. Acta691165doi:10.1016/J.GCA.2004.08.019

[95]  Quentel F.Filella M.Elleouet C.Madec C.-L.2006Sb(III) oxidation by iodate in seawater: a cautionary tale.Sci. Total Environ.355259doi:10.1016/J.SCITOTENV.2005.01.048

[96]  Yan S.Li F.Ding K.Sun H.2003Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione.J. Biol. Inorg. Chem.8689doi:10.1007/S00775-003-0468-1

[97]  dos Santos Ferreira C.Martins P. S.Demicheli C.Brochu C.Ouellette M.Frézard F.2003Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione.Biometals16441doi:10.1023/A:1022823605068

[98]  Mitsunobu S.Takahashi Y.Sakai Y.2007Abiotic reduction of antimony(V) by green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O).Chemosphere70942doi:10.1016/J.CHEMOSPHERE.2007.07.021

[99]  Mitsunobu S.Takahashi Y.Sakai Y.Inumaru K.2009Interaction of synthetic sulfate green rust with antimony(V).Environ. Sci. Technol.43318doi:10.1021/ES8026067

[100]  Kirsch R.Scheinost A. C.Rossberg A.Banerjee D.Charlet L.2008Reduction of antimony by nano-particulate magnetite and mackinawite.Mineral. Mag.72185doi:10.1180/MINMAG.2008.072.1.185

[101]  Shotyk W., Krachler M., Chen B., Anthropogenic impacts on the biogeochemistry and cycling of antimony, in Metal Ions in Biological Systems: 44 (Biogeochemistry, Availability and Transport of Metals in the Environment) 2005, Ch. 7, pp. 171–203 (Marcel Dekker: Heidelberg, Germany).

[102]  Venugopal B., Luckey T. D., Metal Toxicity in Mammals. 2. Chemical Toxicity of Metals and Metalloids 1978, pp. 213–216 (Plenum Press: New York).

[103]  Vangheluwe M., Van Hyfte A., Critical Review on Acute Ecotoxicity Data for Antimony. Commissioned by Campine NV. Final Report – January 2001 2001 (PriceWaterhouseCoopers: Gent, Belgium).

[104]  Bradley W. R.Fredrick W. G.1941The toxicity of antimony – animal studies.Ind. Med.215

[105]  Kuperman R. G.Checkal R. T.Simini M.Phillips C. T.Speicher J. A.Barcliff D. J.2006Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsimia candida, Eisenia fetida, and Enchytraeus crypticus.Environ. Toxicol. Chem.25754

[106]  Kanematsu N.Hara M.Kada T.1980Rec assays and mutagenicity studies on metal compounds.Mutat. Res.77109doi:10.1016/0165-1218(80)90127-5

[107]  Kuroda K.Endo G.Okamoto A.Yoo Y. S.Horiguchi S.1991Genotoxicity of beryllium, gallium and antimony in short-term assays.Mutat. Res.264163doi:10.1016/0165-7992(91)90072-C

[108]  Gurnani N.Sharma A.Talukder G.1992Comparison of the clastogenic effects of antimony trioxide on mice in vivo following acute and chronic exposure.Biometals547doi:10.1007/BF01079697

[109]  Knasmüller S.Gottmann E.Steinkellner H.Fomin A.Pickl C.Paschke A.Göd R.Kundi M.1998Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays.Mutat. Res.42037

[110]  Choe S.-Y.Kim S.-J.Kim H.-G.Lee J. H.Choi Y.Lee H.Kim Y.2003Evaluation of estrogenicity of major heavy metals.Sci. Total Environ.31215

[111]  Darbre P. D.2006Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast.J. Appl. Toxicol.26191doi:10.1002/JAT.1135

[112]  Murata T.Kanao-Koshikawa M.Takamatsu T.2005Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities.Water Air Soil Pollut.164103doi:10.1007/S11270-005-2254-X

[113]  An Y.-J.Kim M.2009Effect of antimony on the microbial growth and the activities of soil enzymes.Chemosphere74654doi:10.1016/J.CHEMOSPHERE.2008.10.023

Full Text PDF (315 KB) Export Citation Cited By (113)