Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Carbon monoxide emissions by phytoplankton: evidence from laboratory experiments

Valérie Gros A E , Ilka Peeken B C D , Katrin Bluhm B , Eckart Zöllner B , Roland Sarda-Esteve A and Bernard Bonsang A

A Laboratoire des Sciences du Climat et de l’Environnement-Unité mixte CEA-CNRS-UVSQ, F-91191 Gif sur Yvette, France.

B IFM-GEOMAR, Leibniz Institute of Marine Sciences, Marine Biogeochemistry, Westshore Building, Duesternbrooker Weg 20, D-24105 Kiel, Germany.

C Center for Marine Environmental Sciences, MARUM, Leobener Strasse, D-28359 Bremen, Germany.

D Alfred-Wegener-Institute for Polar- and Marine Research, Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany.

E Corresponding author. Email: valerie.gros@lsce.ipsl.fr

Environmental Chemistry 6(5) 369-379 http://dx.doi.org/10.1071/EN09020
Submitted: 13 February 2009  Accepted: 8 August 2009   Published: 22 October 2009

Environmental context. Carbon monoxide (CO) is a key component for atmospheric chemistry and its production in the ocean, although minor at the global scale, could play a significant role in the remote marine atmosphere. Up to now, CO production in the ocean was considered to mainly originate from the photo-production of dissolved organic matter (mainly under UV radiation). In this paper, we show evidence for direct production of CO by phytoplankton and we suggest it as a significant mechanism for CO production in the ocean.

Abstract. In order to investigate carbon monoxide (CO) emissions by phytoplankton organisms, a series of laboratory experiments was conducted in Kiel (Germany). Nine monocultures, including diatoms, coccolithophorids, chlorophytes and cyanobacteria have been characterised. This was done by following the CO variations from monoculture aliquots exposed to photosynthetically active radiation during one or two complete diurnal cycles. All the studied cultures have shown significant CO production when illuminated. Emission rates have been estimated to range from 1.4 × 10–5 to 8.7 × 10–4 μg of CO μg chlorophyll–1 h–1 depending on the species. When considering the magnitude of the emission rates from the largest CO emitters (cyanobacteria and diatoms), this biotic source could represent up to 20% of the CO produced in oceanic waters. As global models currently mainly consider CO production from the photo-degradation of dissolved organic matter, this study suggests that biotic CO production should also be taken into account. Whether this biological production might also contribute to some degree to the previous observed non-zero CO production below the euphotic zone (dark CO production) cannot be deduced here and needs to be further investigated.

Additional keywords: biological production, CO, ocean, monocultures.


[1]  Swinnerton J.Linnenbo V.Lamontagne R.1970Ocean: a natural source of carbon monoxide.Science167984doi:10.1126/SCIENCE.167.3920.984

[2]  Stubbins A.Uhera G.Kitidis V.Law C. S.Upstill-Goddard R. C.Woodward E. M. S.2006The open-ocean source of atmospheric carbon monoxide.Deep Sea Res. Part II Top. Stud. Oceanogr.531685doi:10.1016/J.DSR2.2006.05.010

[3]  Chu S. P.Elliott S.Erickson D.2007Basin-scale carbon monoxide distributions in the parallel ocean program.Earth Interact.11221doi:10.1175/EI211.1

[4]  Swinnerton J.Lamontagne R.1974Carbon monoxide in South Pacific Ocean.Tellus26136

[5]  Conrad R.Seiler W.Bunse G.Giehl H.1982Carbon-monoxide in seawater (Atlantic Ocean).Journal of Geophysical Research – Oceans878839

[6]  Johnson J. E.Bates T. S.1996Sources and sinks of carbon monoxide in the mixed layer of the tropical South Pacific Ocean.Global Biogeochem. Cy.10347doi:10.1029/96GB00366

[7]  Wilson D. F.Swinnerton J.Lamontagne R.1970Production of carbon monoxide and gasesous hydrocarbons in seawater - relation to dissolved organic carbon.Science1681577doi:10.1126/SCIENCE.168.3939.1577

[8]  Zuo Y.Jones R. D.1995Formation of carbon-monoxide by photolysis of dissolved marine organic material and its significance in the carbon cycling of the oceans.Naturwissenschaften82472doi:10.1007/BF01131598

[9]  Zafiriou O. C.Andrews S. S.Wang W.2003Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global ‘blue-water’ CO budget.Global Biogeochem. Cy.171015doi:10.1029/2001GB001638

[10]  Valentine R. L.Zepp R. G.1993Formation of carbon-monoxide from the photodegradation of terrestrial dissolved organic-carbon in natural-waters.Environ. Sci. Technol.27409doi:10.1021/ES00039A023

[11]  Zhang Y.Xie H. X.Chen G. H.2006Factors affecting the efficiency of carbon monoxide photoproduction in the St. Lawrence estuarine system (Canada).Environ. Sci. Technol.407771doi:10.1021/ES0615268

[12]  Ziolkowski L. A.Miller W. L.2007Variability of the apparent quantum efficiency of CO photoproduction in the Gulf of Maine and Northwest Atlantic.Mar. Chem.105258doi:10.1016/J.MARCHEM.2007.02.004

[13]  Xie H. X.Belanger S.Demers S.Vincent W. F.Papakyriakou T. N.2009Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring and autumn.Limnol. Oceanogr.54234

[14]  Kettle A. J.2000Comparison of dynamic models to predict the concentration of a photochemical tracer in the upper ocean as a function of depth and time.Mar. Freshwater Res.51289

[15]  Kettle A. J.2005Diurnal cycling of carbon monoxide (CO) in the upper ocean near Bermuda.Ocean Model.8337doi:10.1016/J.OCEMOD.2004.01.003

[16]  Stubbins A.Uher G.Law C. S.Mopper K.Robinson C.Upstill-Goddard R. C.2006Open-ocean carbon monoxide photoproduction.Deep-sea Res. Pt II531695doi:10.1016/J.DSR2.2006.05.011

[17]  Stubbins A.Hubbard V.Uher G.Law C. S.Upstill-Goddard R. C.Aiken G. R.Mopper K.2008Relating carbon monoxide photoproduction to dissolved organic matter functionality.Environ. Sci. Technol.423271doi:10.1021/ES703014Q

[18]  Conrad R.Seiler W.1980Photo-oxidative production and microbial consumption of carbon monoxide in seawater.FEMS Microbiol. Lett.961doi:10.1111/J.1574-6968.1980.TB05606.X

[19]  Troxler R. F.Dokos J. M.1973Formation of carbon-monoxide and bile pigment in red and blue-green-algae.Plant Physiol.5172doi:10.1104/PP.51.1.72

[20]  Loewus M. W.Delwiche C. C.1963Carbon monoxide production by algae.Plant Physiol.38371doi:10.1104/PP.38.4.371

[21]  King G. M.2001Aspects of carbon monoxide production and oxidation by marine macroalgae.Mar. Ecol. Prog. Ser.22469doi:10.3354/MEPS224069

[22]  Bauer K.Conrad R.Seiler W.1980Photo-oxidative production of carbon-monoxide by phototropic microorganisms.Biochim. Biophys. Acta58946doi:10.1016/0005-2728(80)90131-0

[23]  Shaw S. L.Chisholm S. W.Prinn R. G.2003Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton.Mar. Chem.80227doi:10.1016/S0304-4203(02)00101-9

[24]  Mackey M. D.Mackey D. J.Higgings H. W.Wright S. W.1996‘CHEMTAX’ – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton.Mar. Ecol. Prog. Ser.144265doi:10.3354/MEPS144265

[25]  Colomb A.Yassaa N.Williams J.Peeken I.Lochte K.2008Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS).J. Environ. Monit.10325doi:10.1039/B715312K

[26]  Rippka R.Coursin T.Hess W.Lichtle C.Scanlan D. J.Palinska K. A.Iteman I.Partensky F.Houmard J.Herdman M.2000Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. Nov. strain PCC 9511, the first axenic chlorophyll a(2)/b(2)-containing cyanobacterium (Oxyphotobacteria).Int. J. Syst. Evol. Microbiol.501833

[27]  Chen Y. B.Zehr J. P.Mellon M.1996Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: Evidence for a circadian rhythm.J. Phycol.32916

[28]  Guillard R. R. L., Culture of phytoplankton for feeding marine invertebrates, in Culture of Marine Invertebrate Animals (Eds W. L. Smith, M. H. Chanley) 1975, pp. 26–60 (Plenum Press: New York).

[29]  Guillard R. R. L.Ryther J. H.1962Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve.Can. J. Microbiol.8229

[30]  Gros V.Bonsang B.Esteve R. S.1999Atmospheric carbon monoxide ‘in situ’ monitoring by automatic gas chromatography.Chemosphere, Glob. Chang. Sci.1153

[31]  Welschmeyer N. A.1994Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments.Limnol. Oceanogr.391985

[32]  Utermöhl H., Zur Vervollkommnung der quantitativen Phytoplankton Methodik 1958 (E. Schweizerbart’sche Verlagsbuchhandlung, Science Publishers: Stuttgart).

[33]  Marie D.Partensky F.Jacquet S.Vaulot D.1997Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry usingthe nucleic acid stain SYBR Green I.Appl. Environ. Microbiol.63186

[34]  Hillebrand H.Dürselen C.-D.Kirschtel D.Pollingher U.Zohary T.1999Biovolume calculation for pelagic and benthic microalgae.J. Phycol.35403

[35]  Menden-Deuer S.Lessard E. J.2000Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton.Limnol. Oceanogr.45569

[36]  Gasol J. M.Del Giorgio P. A.2000Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities.Sci. Mar.64197

[37]  Lee S.Fuhrman J. A.1987Relationships between biovolume and biomass of naturally derived marine bacterioplankton.Appl. Environ. Microb.531298

[38]  Seiler W.Giehl H.Bunse G.1978Influence of plants on atmospheric carbon-monoxide and dinitrogen oxide.Pure Appl. Geophys.116439

[39]  Wilks S. S.1959Carbon monoxide in green plants.Science129964doi:10.1126/SCIENCE.129.3354.964

[40]  Chappelle E. W.1962Carbon monoxide oxidation by algae.Biochim. Biophys. Acta6245doi:10.1016/0006-3002(62)90491-2

[41]  Ragsdale S. W.2004Life with carbon monoxide.Crit. Rev. Biochem. Mol. Biol.39165doi:10.1080/10409230490496577

[42]  Prézelin B. B.1992Diel periodicity in phytoplankton productivity.Hydrobiologia2381doi:10.1007/BF00048771

[43]  Dunlap J. C.1999Molecular bases for circadian clocks.Cell96271doi:10.1016/S0092-8674(00)80566-8

[44]  Iwasaki H.Dunlap J. C.2000Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks.Curr. Opin. Microbiol.3189doi:10.1016/S1369-5274(00)00074-6

[45]  Troxler R. F.1972Synthesis of bile pigments in plants formation of carbon-monoxide and phycocyanobilin in wild-type and mutant strains of alga, Cyanidium caldarium.Biochemistry114235doi:10.1021/BI00773A007

[46]  Mecherikunnel A.Duncan C. H.1982Total and spectral solar irradiance measured at ground surface.Appl. Opt.21554doi:10.1364/AO.21.000554

[47]  Giles-Guzmán A. D.Alvarez-Borrego S.2000Vertical attenuation coefficient of photosynthetically active radiation as a function of chlorophyll concentration and depth in case 1 waters.Appl. Opt.391351doi:10.1364/AO.39.001351

[48]  Alvain S.Moulin C.Dandonneau Y.Loisel H.2008Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view.Global Biogeochem. Cy.22GB3001doi:10.1029/2007GB003154

Export Citation