Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Aeolian iron mobilisation by dust–acid interactions and their implications for soluble iron deposition to the ocean: a test involving potential anthropogenic organic acidic species

Chao Luo A B C and Yuan Gao A D

A Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA.

B Department of Earth and Atmospheric sciences, Cornell University, Ithaca, NY 14853, USA.

C Present address: School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.

D Corresponding author. Email: yuangaoh@andromeda.rutgers.edu

Environmental Chemistry 7(2) 153-161 http://dx.doi.org/10.1071/EN09116
Submitted: 9 November 2009  Accepted: 17 February 2010   Published: 22 April 2010

Environmental context. Studying the input of atmospheric soluble iron to the ocean is important as the soluble form of iron is bioavailable for phytoplankton uptake in the surface ocean to support photosynthesis. In this paper, the effect of organic acidic species on atmospheric iron dissolution is addressed through a global model for the first time. The new results contribute to a better understanding of iron dissolution processes in the atmosphere and the role of atmospheric iron in ocean biogeochemical cycles.

Abstract. Dust deposition is a major source of iron in certain oceanic regions. Many atmospheric processes, such as heterogeneous reactions with acidic species, may convert insoluble iron in dust to soluble forms that become bioavailable for phytoplankton uptake in the surface ocean. Here we report for the first time the effects of organic acidic species on iron dissolution using laboratory-measured conversion rates by oxalate, simulated in a global model to estimate soluble iron fluxes to the ocean. With the complexity and limited data from measurements relating to different sources for oxalate, we focus on the effect of oxalate of anthropogenic origin in this work as a first-step testing, and we apply a scaling factor for oxalate based on its relationship with aerosol sulfate observed by in situ measurements in the continental sites. The results show better correlation with the observations than the work including inorganic acids alone, suggesting the contribution of organic acids to Fe dissolution. However, the simulated iron solubility is lower than that derived from measurements, suggesting additional processes may contribute to Fe dissolution that should be included in the model. Total deposition of soluble iron to the global ocean including the effect by anthropogenic oxalate is ~0.34 Tg year–1.


References

[1]  Martin J. H.Gordon R. M.Fitzwater S. E.1991The case for iron.Limnol. Oceanogr.361793

[2]  Boyd P. W.Watson A. J.Law C. S.Abraham E. R.Trull T.Murdoch R.Bakker D. C. E.Bowie A. R.et al.2000A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.Nature407695
doi:10.1038/35037500

[3]  Capone D. G.Zehr J. P.Paerl H. W.Bergman B.Carpenter E. J.1997Trichodesmium, a globally significant marine cyanobacterium.Science2761221doi:10.1126/SCIENCE.276.5316.1221

[4]  Falkowski P. G.Barber R. T.Smetacek V.1998Biogeochemical controls and feedbacks on ocean primary production.Science281200doi:10.1126/SCIENCE.281.5374.200

[5]  Lefèvre N.Waterson A. J.1999Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations.Global Biogeochem. Cycles13727doi:10.1029/1999GB900034

[6]  Duce R. A.Tindale N. W.1991Atmospheric transport of iron and its deposition in the ocean.Limnol. Oceanogr.361715

[7]  Fung I. Y.Meyn S. K.Tegen I.Doney S. C.John J. G.Bishop J. K. B.2000Iron supply and demand in the upper ocean.Global Biogeochem. Cycles14281
doi:10.1029/1999GB900059

[8]  Byrne R. H.Luo Y. R.Young R. W.2000Iron hydrolysis and solubility revisited: observations and comments on iron hydrolysis characterizations.Mar. Chem.7023doi:10.1016/S0304-4203(00)00012-8

[9]  Chen Y.Siefert R. L.2004Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean.J. Geophys. Res.109D09305doi:10.1029/2003JD003958

[10]  Kuma K.Nishioka J.Matsunaga K.1996Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators.Limnol. Oceanogr.41396

[11]  Liu X.Millero F. J.1999The solubility of iron hydroxide in sodium chloride solutions.Geochim. Cosmochim. Acta633487
doi:10.1016/S0016-7037(99)00270-7

[12]  Liu X.Millero F. J.2002The solubility of iron in seawater.Mar. Chem.7743doi:10.1016/S0304-4203(01)00074-3

[13]  Barbeau K.Rue E. L.Bruland K. W.Butler A.2001Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands.Nature413409doi:10.1038/35096545

[14]  Barbeau K.2006Photochemistry of organic iron(III) complexing ligands in oceanic systems.Photochem. Photobiol.821505

[15]  Baker A. R.Jickells T. D.2006Mineral particle size as a control on aerosol iron solubility.Geophys. Res. Lett.33L17608
doi:10.1029/2006GL026557

[16]  Buck C. S.Landing W. M.Resing J. A.Lebon G. T.2006Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise, 2006.Geochem. Geophys. Geosyst.7Q04M07doi:10.1029/2005GC000977

[17]  Measures C. I.Landing W. M.Brown M. T.Buck C. S.2008High-resolution Al and Fe data from the Atlantic Ocean CLIVAR-CO2 repeat hydrography A16N transect: extensive linkages between atmospheric dust and upper ocean geochemistry.Global Biogeochem. Cycles22GB1005doi:10.1029/2007GB003042

[18]  Wu J.Rember R.Cahill C.2007Dissolution of aerosol iron in the surface waters of the North Pacific and North Atlantic oceans as determined by a semicontinuous flow-through reactor method.Global Biogeochem. Cycles21GB4010doi:10.1029/2006GB002851

[19]  Baker A. R., Croot P. L., Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 2008, in press.doi:10.1016/J.MARCHEM.2008.09.003

[20]  Zuo Y. G.Hoigne J.1992Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes.Environ. Sci. Technol.261014doi:10.1021/ES00029A022

[21]  Siefert R. L.Pehkonen S. O.Erel Y.Hoffman M. R.1994Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids.Geochim. Cosmochim. Acta583271doi:10.1016/0016-7037(94)90055-8

[22]  Zhu X.Prospero J. M.Millero F. J.1997Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados.J. Geophys. Res.10221297doi:10.1029/97JD01313

[23]  Zuo Y. G.Hoigne J.1994Photochemical decomposition of oxalic, glyoxalic and pyruvic- acid catalyzed by iron in atmospheric waters.Atmos. Environ.281231doi:10.1016/1352-2310(94)90270-4

[24]  Zuo Y. G.Deng Y. W.1997Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases.Chemosphere352051doi:10.1016/S0045-6535(97)00228-2

[25]  Cooper W. J.Saltzman E. S.Zika R. G.1987The contribution of rainwater to variability in surface ocean hydrogen peroxide.J. Geophys. Res.922970doi:10.1029/JC092IC03P02970

[26]  Cohan D. S.Schultz M. G.Jacob D. J.Heikes B. G.Blake D. R.1999Convective injection and photochemical decay of peroxides in the tropical upper troposphere: methyl iodide as a tracer of marine convection.J. Geophys. Res.1045717doi:10.1029/98JD01963

[27]  Croot P. L.Strew P.Peeken I.Lochte K.Baker A. R.2004Influence of the ITCZ on H2O2 in near surface waters in the equatorial Atlantic Ocean.Geophys. Res. Lett.31L23S04doi:10.1029/2004GL020154

[28]  Johansen A. M.Siefert R. L.Hoffman M. R.2000Chemical composition of aerosol collected over the tropical North Atlantic Ocean.J. Geophys. Res.10515277doi:10.1029/2000JD900024

[29]  Meskhidze N.Chameides W. L.Nenes A.2005Dust and pollution: a recipe for enhanced ocean fertilization?J. Geophys. Res.110D03301doi:10.1029/2004JD005082

[30]  Sedwick P. N.Sholkovitz E. R.Church T. M.2007Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea.Geochem. Geophys. Geosyst.810Q10Q06doi:10.1029/2007GC001586

[31]  Sholkovitz E. R.Sedwick P. N.Church T. M.2009Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic.Geochim. Cosmochim. Acta733981doi:10.1016/J.GCA.2009.04.029

[32]  Solmon F.Chuang P. Y.Meskhidze N.Chen Y.2009Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean.J. Geophys. Res.114D02305doi:10.1029/2008JD010417

[33]  Meskhidze N.Chameides W. L.Nenes A.Chen G.2003Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity?Geophys. Res. Lett.302085doi:10.1029/2003GL018035

[34]  Luo C.Mahowald N.Meskhidze N.Chen Y.Siefert R. L.Baker A. R.2005Estimation of iron solubility from observations and a global aerosol model.J. Geophys. Res.110D23307doi:10.1029/2005JD006059

[35]  Fan S.-M.Moxim W. J.Levy H.2006Aeolian input of bioavailable iron to the ocean.Geophys. Res. Lett.33L07602doi:10.1029/2005GL024852

[36]  Yang H.Gao Y.2007Air-to-sea flux of soluble iron: Is it driven more by HNO3 or SO2? An examination in the light of dust aging.Atmos. Chem. Phys. Discuss.710043

[37]  Cornell R. M.Schindler P. W.1987Photochemical dissolution of goethite in acid/oxalate solution.Clays Clay Miner.35347
doi:10.1346/CCMN.1987.0350504

[38]  Warneck P.2003In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere.Atmos. Environ.372423doi:10.1016/S1352-2310(03)00136-5

[39]  Kawamura K.Kaplan I. R.1987Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air.Environ. Sci. Technol.21105doi:10.1021/ES00155A014

[40]  Huang X. F.Yu J. Z.2007Is vehicle exhaust a significant primary source of oxalic acid in ambient aerosols?Geophys. Res. Lett.34L02808doi:10.1029/2006GL028457

[41]  Kawamura K.Ikushima K.1993Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere.Environ. Sci. Technol.272227doi:10.1021/ES00047A033

[42]  Kawamura K.Yasui O.2005Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere.Atmos. Environ.391945doi:10.1016/J.ATMOSENV.2004.12.014

[43]  Zhao Y.Gao Y.2008Mass size distributions of water-soluble inorganic and organic ions in size segregated aerosols over metropolitan Newark in the US east coast.Atmos. Environ.424063doi:10.1016/J.ATMOSENV.2008.01.032

[44]  Mochida M.Kawamura K.Umemoto N.Kobayashi M.Matsunaga S.Lim H.-J.Turpin B. J.Bates T. S.et al.2003Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia: continental outflow of organic aerosols during the ACE-Asia campaign.J. Geophys. Res.108D238638doi:10.1029/2002JD003249

[45]  Yao X. H.Lau A. P. S.Fang M.Chan C. K.Hu M.2003Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2-dicarboxylic acids.Atmos. Environ.373001doi:10.1016/S1352-2310(03)00256-5

[46]  Chebbi A.Carlier P.1996Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review.Atmos. Environ.304233doi:10.1016/1352-2310(96)00102-1

[47]  Kerminen V. M.Teinila K.Hillamo R.Makela T.1999Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere.Atmos. Environ.332089doi:10.1016/S1352-2310(98)00350-1

[48]  Faust B. C.Zepp R. G.1993Photochemistry of aqueous iron(III)–polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters.Environ. Sci. Technol.272517doi:10.1021/ES00048A032

[49]  Blando J. D.Turpin B. J.2000Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility.Atmos. Environ.341623doi:10.1016/S1352-2310(99)00392-1

[50]  Borggaard O. K.1992Dissolution of poorly crystalline iron oxides in soils by EDTA and oxalate.Zeitschrift für Pflanzenernährung und Bodenkunde155431doi:10.1002/JPLN.19921550513

[51]  Gao S.Hegg D. A.Bobbs P. V.Kirchstette T. W.Magi B. I.Sadilek M.2003Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution.J. Geophys. Res.108D138491doi:10.1029/2002JD002324

[52]  Rasch P. J.Mahowald N. M.Eaton B. E.1997Representation of transport, convection and hydrologic cycle in chemical transport models: implications for the modeling of short-lived and soluble species.J. Geophys. Res.102D2328127doi:10.1029/97JD02087

[53]  Kistler R.Kalnay E.Collins W.Saha S.White G.Woollen J.Chelliah M.Ebisuzaki W.et al.2001The NCEP-NCAR 5-year reanalysis: monthly means CD-ROM and documentation.Bull. Am. Meteorol. Soc.82247doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

[54]  Zender C.Bian H.Newman D. L.2003Mineral dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology.J. Geophys. Res.1084416doi:10.1029/2002JD002775

[55]  Gillette D. A.Passi R.1988Modeling of dust emission caused by wind erosion.J. Geophys. Res.9314233doi:10.1029/JD093ID11P14233

[56]  Ginoux P.Chin M.Tegen I.Prospero J.Holben B.Dubovik O.Lin S. J.2001Sources and distributions of dust aerosols simulated with the GOCART model.J. Geophys. Res.10620255doi:10.1029/2000JD000053

[57]  Mahowald N.Zender C.Luo C.Savoie D.Torres O.del Corral J.2002Understanding the 30-year Barbados desert dust record.J. Geophys. Res.107D214561doi:10.1029/2002JD002097

[58]  Seinfeld J., Pandis S., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 1996 (Wiley: New York).

[59]  Rasch P. J.Feichter J.Law K.Mahowald N. M.Penner J.2000A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995.Tellus52B1025

[60]  Benkovitz C. M.Scholtz M. T.Pacyna J.Tarrasón L.Dignon J.Voldner E. C.Spiro P. A.Logan J. A.Graedel T. E.1996Global gridded inventories of anthropogenic emissions of sulfur and nitrogen.J. Geophys. Res.10129239
doi:10.1029/96JD00126

[61]  Xu N.Gao Y.2008Characterization of hematite dissolution affected by oxalate coating, kinetics and pH.Appl. Geochem.23783doi:10.1016/J.APGEOCHEM.2007.12.026

[62]  Yu J.Huang X.Xu J.Hu M.2005When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate.Environ. Sci. Technol.39128doi:10.1021/ES049559F

[63]  Huang X. F.Yu J. Z.He L. Y.Yuan Z.2006Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: size distribution characteristics, sources, and formation mechanisms.J. Geophys. Res.111D22212doi:10.1029/2006JD007408

[64]  Mahowald N.Luo C.del Corral J.Zender C.2003Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data.J. Geophys. Res.108D124352doi:10.1029/2002JD002821

[65]  Sarthou G.Baker A. R.Kramer J.Laan P.Laës A.Ussher S.Achterberg E. P.de Baar H. J. W.Timmermans K. R.Blain S.2007Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean.Mar. Chem.104186doi:10.1016/J.MARCHEM.2006.11.004

[66]  Graber E. R.Rudich Y.2006Atmospheric HULIS: how humic-like are they? A comprehensive and critical review.Atmos. Chem. Phys.6729

[67]  Sannigrahi P.Sullivan A. P.Weber R. J.Ingall E. D.2005Characterization of water-soluble organic carbon in urban atmospheric aerosols using solid-state 13C NMR spectroscopy.Environ. Sci. Technol.40666
doi:10.1021/ES051150I

[68]  Duarte R. M. B. O.Santos E. B. H.Pio C. A.Duarte A. C.2007Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances.Atmos. Environ.418100doi:10.1016/J.ATMOSENV.2007.06.034



Export Citation