Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Relationships between atmospheric organic compounds and air-mass exposure to marine biology

S. R. Arnold A G , D. V. Spracklen A , S. Gebhardt B , T. Custer B , J. Williams B , I. Peeken C D E and S. Alvain F
+ Author Affiliations
- Author Affiliations

A Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

B Max Planck Institute for Chemistry, Joh.-Joachim-Becher-Weg 27, D-55128 Mainz, Germany.

C Ifm GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany.

D Center for Marine Environmental Sciences (MARUM), Leobener Strasse, D-28359 Bremen, Germany.

E Alfred-Wegener-Institute for Polar- and Marine Research, Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany.

F Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanologie et de Géosciences (LOG), Unité Mixte de Recherche (UMR) 8187, 32 Avenue Foch, F-62930 Wimereux, France.

G Corresponding author. Email: s.arnold@leeds.ac.uk

Environmental Chemistry 7(3) 232-241 https://doi.org/10.1071/EN09144
Submitted: 15 November 2009  Accepted: 20 April 2010   Published: 22 June 2010

Environmental context. The exchange of gases between the atmosphere and oceans impacts Earth’s climate. Over the remote oceans, marine emissions of organic species may have significant impacts on cloud properties and the atmosphere’s oxidative capacity. Quantifying these emissions and their dependence on ocean biology over the global oceans is a major challenge. Here we present a new method which relates atmospheric abundance of several organic chemicals over the South Atlantic Ocean to the exposure of air to ocean biology over several days before its sampling.

Abstract. We have used a Lagrangian transport model and satellite observations of oceanic chlorophyll-a concentrations and phytoplankton community structure, to investigate relationships between air mass biological exposure and atmospheric concentrations of organic compounds over the remote South Atlantic Ocean in January and February 2007. Accounting for spatial and temporal exposure of air masses to chlorophyll from biologically active ocean regions upwind of the observation location produces significant correlations with atmospheric organohalogens, despite insignificant or smaller correlations using commonly applied in-situ chlorophyll. Strongest correlations (r = 0.42–0.53) are obtained with chlorophyll exposure over a 2-day transport history for CHBr3, CH2Br2, CH3I, and dimethylsulfide, and are strengthened further with exposure to specific phytoplankton types. Incorporating daylight and wind-speed terms into the chlorophyll exposure results in reduced correlations. The method demonstrates that conclusions drawn regarding oceanic trace-gas sources from in-situ chlorophyll or satellite chlorophyll averages over arbitrary areas may prove erroneous without accounting for the transport history of air sampled.


Acknowledgements

This work was part of the OOMPH project (018419) which was funded under the EU sixth framework programme. The authors are grateful for logistical support from the Institut Polaire Francais Aerotrace program during the Southern Ocean cruise. The authors thank Paul Berrisford, Alan Iwi and the British Atmospheric Data Centre for facilitating access to ECMWF analysis data. The authors acknowledge funding from a British Council Academic Research Collaboration (ARC) grant.


References


[1]   G. E. Shaw , Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 1983 , 5,  297.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   R. J. Charlson , J. E. Lovelock , M. O. Andreae , S. G. Warren , Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987 , 326,  655.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   P. S. Liss , A. D. Hatton , G. Malin , P. D. Nightingale , S. M. Turner , Marine sulphur emissions. Philos. T. Roy. Soc. B 1997 , 352,  159.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[4]   G. P. Ayers , J. M. Cainey , The CLAW hypothesis: a review of the major developments. Environ. Chem. 2007 , 4,  366.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   N. Meskhidze , A. Nenes , Phytoplankton and cloudiness in the Southern Ocean. Science 2006 , 314,  1419.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   C. D. O’Dowd , M. C. Facchini , F. Cavalli , D. Ceburnis , M. Mircea , S. Decesari , S. Fuzzi , Y. J. Yoon , J.-P. Putaud , Biogenically driven organic contribution to marine aerosol. Nature 2004 , 431,  676.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   Y. J. Yoon , D. Ceburnis , F. Cavalli , O. Jourdan , J. P. Putaud , M. C. Facchini , S. Decesari , S. Fuzzi , K. Sellegri , S. G. Jennings , C. D. O’Dowd , Seasonal characteristics of the physiochemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res. 2007 , 112,  D04206.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   B. Langmann , C. Scannell , C. O’Dowd , New directions: organic matter contribution to marine aerosols and cloud condensation nuclei. Atmos. Environ. 2008 , 42,  7821.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   D. V. Spracklen , S. R. Arnold , J. Sciare , K. S. Carslaw , C. Pio , Globally significant oceanic source of organic carbon aerosol. Geophys. Res. Lett. 2008 , 35,  L12811.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   G. J. Roelofs , A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation. Atmos. Chem. Phys. 2008 , 8,  709.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   P. I. Palmer , S. L. Shaw , Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys. Res. Lett. 2005 , 32,  L09805.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   S. R. Arnold , D. V. Spracklen , J. Williams , N. Yassaa , J. Sciare , B. Bonsang , V. Gros , I. Peeken , et al. Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos. Chem. Phys. 2009 , 9,  1253.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   B. Gantt , N. Meskhidze , D. Kamykowski , A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos. Chem. Phys. 2009 , 9,  4915.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   N. Yassaa , I. Peeken , E. Zöllner , K. Bluhm , S. R. Arnold , D. V. Spracklen , H. Wernli , J. Williams , Evidence for marine production of monoterpenes. Environ. Chem. 2008 , 5,  391.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   WMO, Chapter 2: Halogenated very short-lived substances, in Scientific Assessment of Ozone Depletion: 2006 – Global Ozone Research and Monitoring Project, Report No. 50 2007, pp. 2.1–2.58 (World Meteorological Organization: Geneva, Switzerland).

[16]   WMO, Chapter 1: Long-lived compounds, in Scientific Assessment of Ozone Depletion: 2006 – Global Ozone Research and Monitoring Project, Report No. 50 2007, pp. 1.1–1.63 (World Meteorological Organization: Geneva, Switzerland).

[17]   D. Davis , J. Crawford , S. Liu , S. McKeen , A. Bandy , D. Thornton , F. Rowland , D. Blake , Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. J. Geophys. Res. 1996 , 101,  2135.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   K. A. Read , A. S. Mahajan , L. J. Carpenter , M. J. Evans , B. V. E. Faria , D. E. Heard , J. R. Hopkins , J. D. Lee , Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 2008 , 453,  1232.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   S. Solomon , R. R. Garcia , A. R. Ravishankara , On the role of iodine in ozone depletion. J. Geophys. Res. 1994 , 99,  20491.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   L. J. Carpenter , C. E. Jones , R. M. Dunk , K. E. Hornsby , J. Woeltjen , Air–sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean. Atmos. Chem. Phys. 2009 , 9,  1805.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   C. D. O’Dowd , B. Langmann , S. Varghese , C. Scannell , D. Ceburnis , M. C. Facchini , A combined organic-inorganic sea-spray source function. Geophys. Res. Lett. 2008 , 35,  L01801.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   J. Methven , B. Hoskins , The advection of high resolution tracers by low resolution winds. J. Atmos. Sci. 1999 , 56,  3262.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   J. Methven , M. Evans , P. Simmonds , G. Spain , Estimating relationships between air-mass origin and chemical composition. J. Geophys. Res. 2001 , 106,  5005.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   J. Methven , S. R. Arnold , F. M. O’Connor , H. Barjat , K. Dewey , J. Kent , N. Brough , Estimating photochemically produced ozone throughout a domain using flight data and a Lagrangian model. J. Geophys. Res. 2003 , 108,  4271.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   A. Colette , G. Ancellet , L. Menut , S. R. Arnold , A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign. Atmos. Chem. Phys. 2006 , 6,  3487.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   V. Gros , J. Williams , J. A. van Aardenne , G. Salisbury , R. Hofmann , M. G. Lawrence , R. von Kuhlmann , J. Lelieveld , Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime European outflow (on Crete in 2001). Atmos. Chem. Phys. 2003 , 3,  1223.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   J. E. Mak , C. A. M. Brenninkmeijer , Compressed-air sample technology for isotopic analysis of atmospheric carbon-monoxide. J. Atmos. Ocean. Technol. 1994 , 11,  425.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   S. Taddei , P. Toscano , B. Gioli , A. Matese , F. Miglietta , F. P. Vaccari , A. Zaldei , T. Custer , J. Williams , Carbon dioxide and acetone air–sea fluxes over the Southern Atlantic. Environ. Sci. Technol. 2009 , 43,  5218.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   L. Hoffmann , I. Peeken , K. Lochte , P. Assmy , M. Veldhuis , Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol. Oceanogr. 2006 , 51,  1217.
        |  CAS |  open url image1

[30]   Methven J., Offline trajectories: calculation and accuracy. UK Universities Global Atmospheric Modelling Programme, Tech. Rep. 44 1997 (University of Reading: Reading, UK).

[31]   R. Wanninkhof , W. R. McGillis , A cubic relationship between air–sea CO2 exchange and wind speed. Geophys. Res. Lett. 1999 , 26,  1889.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   B. Quack , D. W. R. Wallace , Air–sea flux of bromoform: controls, rates, and implications. Global Biogeochem. Cycles 2003 , 17,  1023.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   B. Quack , G. Petrick , I. Peeken , K. Nachtigall , Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling. J. Geophys. Res. – Oceans 2007 , 112,  C100006.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   S. L. Manley , J. L. de la Cuesta , Methyl iodide production from marine phytoplankton cultures. Limnol. Oceanogr. 1997 , 42,  142.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   M. G. Scarratt , R. M. Moore , Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum. Limnol. Oceanogr. 1999 , 44,  703.
        |  CAS | | Crossref |  open url image1

[36]   J. D. Happell , D. W. R. Wallace , Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: evidence for photochemical production. Geophys. Res. Lett. 1996 , 23,  2105.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   U. Richter , D. W. R. Wallace , Production of methyl iodide in the tropical Atlantic Ocean. Geophys. Res. Lett. 2004 , 31,  L23S03.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   R. Moore , O. Zafiriou , Photochemical production of methyl iodide in seawater. J. Geophys. Res. 1994 , 99,  16415.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   R. M. Moore , Methyl halide production and loss rates in sea water from field incubation experiments. Mar. Chem. 2006 , 101,  213.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   A. Colomb , V. Gros , S. Alvain , R. Sarda-Esteve , B. Bonsang , C. Moulin , T. Klüpfel , J. Williams , Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30–49°S). Environ. Chem. 2009 , 6,  70.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   M. Kritz , Use of long-lived radon daughters as indicators of exchange between the free troposphere and the marine boundary layer. J. Geophys. Res. 1983 , 88,  8569.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   G. M. Devine , K. S. Carslaw , D. J. Parker , J. C. Petch , The influence of subgrid surface-layer variability on vertical transport of a chemical species in a convective environment. Geophys. Res. Lett. 2006 , 33,  L15807.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   E. G. Chapman , W. J. Shaw , R. C. Easter , X. Bian , S. J. Ghan , Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes. J. Geophys. Res. 2002 , 107,  4672.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[44]   L. J. Carpenter , P. S. Liss , S. A. Penkett , Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans. J. Geophys. Res. 2003 , 108,  4256.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   S. Alvain , C. Moulin , Y. Dandonneau , F. M. Breon , Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005 , 52,  1989.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   Y. Dandonneau , P.-Y. Deschamps , J.-M. Nicolas , H. Loisel , J. Blanchot , Y. Montel , F. Thieuleux , G. Bécu , Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004 , 51,  303.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   S. Alvain , C. Moulin , Y. Dandonneau , H. Loisel , Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Global Biogeochem. Cycles 2008 , 22,  GB3001.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   S. L. Shaw , S. W. Chisholm , R. G. Prinn , Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar. Chem. 2003 , 80,  227.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[49]   S.-M. Li , Y. Yokouchi , L. A. Barrie , K. Muthuramu , P. B. Shepson , J. W. Bottenheim , W. T. Sturges , S. Landsberger , Organic and inorganic bromine compounds and their composition in the Arctic troposphere during polar sunrise. J. Geophys. Res. 1994 , 99,  25415.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   Y. Zhou , R. K. Varner , R. S. Russo , O. W. Wingenter , K. B. Haase , R. Talbot , B. C. Sive , Coastal water source of short-lived halocarbons in New England. J. Geophys. Res. 2005 , 110,  D21302.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   WMO, Chapter 1: Controlled substances and other source gases, in Scientific Assessment of Ozone Depletion: 2002 – Global Ozone Research and Monitoring project, Report No. 47 2003, pp. 1.1–1.83 (World Meteorological Organization: Geneva, Switzerland).

[52]   W. Groszko , R. M. Moore , Ocean-atmosphere exchange of methyl bromide: NW Atlantic and Pacific Ocean studies. J. Geophys. Res. 1998 , 103,  16737.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[53]   D. B. King , J. H. Butler , S. A. Montzka , S. A. Yvon-Lewis , J. W. Elkins , Implications of methyl bromide supersaturations in the temperate North Atlantic Ocean. J. Geophys. Res. 2000 , 105,  19763.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[54]   D. B. King , J. H. Butler , S. A. Yvon-Lewis , S. A. Cotton , Predicting oceanic methyl bromide saturation from SST. Geophys. Res. Lett. 2002 , 29,  2199.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[55]   A. McCulloch , Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 2003 , 50,  1291.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[56]   A. Kettle , M. Andreae , Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J. Geophys. Res. 2000 , 105,  26793.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[57]   Keller M. D., Bellows W. K., Guillard R. R. L., Dimethylsulfide production in marine phytoplankton, in Biogenic Sulfur in the Environment (Eds E. S. Saltzman, W. J. Cooper) 1989, Symposium Series No. 393, pp. 167–182 (American Chemical Society: Washington, DC).

[58]   P. S. Liss , A. D. Hatton , G. Malin , P. D. Nightingale , S. M. Turner , Marine sulphur emissions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997 , 352,  159.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[59]   A. Gabric , N. Murray , L. Stone , M. Kohl , Modeling the production of dimethylshulfide during a phytoplankton bloom. J. Geophys. Res. – Oceans 1993 , 98,  22805.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[60]   G. Malin , G. O. Kirst , Algal production of dimethyl sulfide and its atmospheric role. J. Phycol. 1997 , 33,  889.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[61]   S. Belviso , S. K. Kim , F. Rassoulzadegan , B. Krajka , B. C. Nguyen , N. Mihalopoulos , P. Buatmenard , Production of dimethylsulfonium propionate (DMSP) and dimethylsulfide (DMS) by a microbial foodweb. Limnol. Oceanogr. 1990 , 35,  1810.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[62]   R. Simó , Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 2001 , 16,  287.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[63]   N. Yassaa , C. A. K. Lochte , I. Peeken , J. Williams , Development and application of a headspace solid-phase microextraction and gas chromatography/mass spectrometry method for the determination of dimethylsulfide emitted by eight marine phytoplankton species. Limnol. Oceanogr. Methods 2006 , 4,  374.
        |  CAS |  open url image1

[64]   C. Evans , S. D. Archer , S. Jacquet , W. H. Wilson , Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat. Microb. Ecol. 2003 , 30,  207.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[65]   M. O. Andreae , Dimethylsulfide in the water column and the sediment porewaters of the Peru upwelling area. Limnol. Oceanogr. 1985 , 30,  1208.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[66]   D. Franklin , J. A. Poulton , M. Steinke , J. Young , I. Peeken , G. Malin , Dimethylsulphide, DMSP-lyase activity and microplankton community structure inside and outside of the Mauritanian upwelling. Prog. Oceanogr. 2009 , 83,  134.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[67]   J. M. Roberts , F. C. Fehsenfeld , S. C. Liu , M. J. Bollinger , C. Hahn , D. L. Albritton , R. E. Sievers , Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere: observation of air mass photochemical aging and NOx removal. Atmos. Environ. 1984 , 18,  2421.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[68]   A. Heiden , K. Kobel , M. Komenda , R. Koppmann , M. Shao , J. Wildt , Toluene emissions from plants. Geophys. Res. Lett. 1999 , 26,  1283.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[69]   M. L. White , R. S. Russo , Y. Zhou , J. L. Ambrose , K. Haase , E. K. Frinak , R. K. Varner , O. W. Wingenter , Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States? Atmos. Chem. Phys. 2009 , 9,  81.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[70]   A. U. Bracher , M. Vountas , T. Dinter , J. P. Burrows , R. Röttgers , I. Peeken , Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 2009 , 6,  751.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1