Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Relationships between atmospheric organic compounds and air-mass exposure to marine biology

S. R. Arnold A G , D. V. Spracklen A , S. Gebhardt B , T. Custer B , J. Williams B , I. Peeken C D E and S. Alvain F

A Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

B Max Planck Institute for Chemistry, Joh.-Joachim-Becher-Weg 27, D-55128 Mainz, Germany.

C Ifm GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany.

D Center for Marine Environmental Sciences (MARUM), Leobener Strasse, D-28359 Bremen, Germany.

E Alfred-Wegener-Institute for Polar- and Marine Research, Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany.

F Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanologie et de Géosciences (LOG), Unité Mixte de Recherche (UMR) 8187, 32 Avenue Foch, F-62930 Wimereux, France.

G Corresponding author. Email: s.arnold@leeds.ac.uk

Environmental Chemistry 7(3) 232-241 http://dx.doi.org/10.1071/EN09144
Submitted: 15 November 2009  Accepted: 20 April 2010   Published: 22 June 2010

Environmental context. The exchange of gases between the atmosphere and oceans impacts Earth’s climate. Over the remote oceans, marine emissions of organic species may have significant impacts on cloud properties and the atmosphere’s oxidative capacity. Quantifying these emissions and their dependence on ocean biology over the global oceans is a major challenge. Here we present a new method which relates atmospheric abundance of several organic chemicals over the South Atlantic Ocean to the exposure of air to ocean biology over several days before its sampling.

Abstract. We have used a Lagrangian transport model and satellite observations of oceanic chlorophyll-a concentrations and phytoplankton community structure, to investigate relationships between air mass biological exposure and atmospheric concentrations of organic compounds over the remote South Atlantic Ocean in January and February 2007. Accounting for spatial and temporal exposure of air masses to chlorophyll from biologically active ocean regions upwind of the observation location produces significant correlations with atmospheric organohalogens, despite insignificant or smaller correlations using commonly applied in-situ chlorophyll. Strongest correlations (r = 0.42–0.53) are obtained with chlorophyll exposure over a 2-day transport history for CHBr3, CH2Br2, CH3I, and dimethylsulfide, and are strengthened further with exposure to specific phytoplankton types. Incorporating daylight and wind-speed terms into the chlorophyll exposure results in reduced correlations. The method demonstrates that conclusions drawn regarding oceanic trace-gas sources from in-situ chlorophyll or satellite chlorophyll averages over arbitrary areas may prove erroneous without accounting for the transport history of air sampled.


[1]  Shaw G. E.1983Bio-controlled thermostasis involving the sulfur cycle.Clim. Change5297doi:10.1007/BF02423524

[2]  Charlson R. J.Lovelock J. E.Andreae M. O.Warren S. G.1987Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Nature326655doi:10.1038/326655A0

[3]  Liss P. S.Hatton A. D.Malin G.Nightingale P. D.Turner S. M.1997Marine sulphur emissions.Philos. T. Roy. Soc. B352159doi:10.1098/RSTB.1997.0011

[4]  Ayers G. P.Cainey J. M.2007The CLAW hypothesis: a review of the major developments.Environ. Chem.4366doi:10.1071/EN07080

[5]  Meskhidze N.Nenes A.2006Phytoplankton and cloudiness in the Southern Ocean.Science3141419doi:10.1126/SCIENCE.1131779

[6]  O’Dowd C. D.Facchini M. C.Cavalli F.Ceburnis D.Mircea M.Decesari S.Fuzzi S.Yoon Y. J.Putaud J.-P.2004Biogenically driven organic contribution to marine aerosol.Nature431676doi:10.1038/NATURE02959

[7]  Yoon Y. J.Ceburnis D.Cavalli F.Jourdan O.Putaud J. P.Facchini M. C.Decesari S.Fuzzi S.Sellegri K.Jennings S. G.O’Dowd C. D.2007Seasonal characteristics of the physiochemical properties of North Atlantic marine atmospheric aerosols.J. Geophys. Res.112D04206doi:10.1029/2005JD007044

[8]  Langmann B.Scannell C.O’Dowd C.2008New directions: organic matter contribution to marine aerosols and cloud condensation nuclei.Atmos. Environ.427821doi:10.1016/J.ATMOSENV.2008.09.002

[9]  Spracklen D. V.Arnold S. R.Sciare J.Carslaw K. S.Pio C.2008Globally significant oceanic source of organic carbon aerosol.Geophys. Res. Lett.35L12811doi:10.1029/2008GL033359

[10]  Roelofs G. J.2008A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation.Atmos. Chem. Phys.8709doi:10.5194/ACP-8-709-2008

[11]  Palmer P. I.Shaw S. L.2005Quantifying global marine isoprene fluxes using MODIS chlorophyll observations.Geophys. Res. Lett.32L09805doi:10.1029/2005GL022592

[12]  Arnold S. R.Spracklen D. V.Williams J.Yassaa N.Sciare J.Bonsang B.Gros V.Peeken I.et al.2009Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol.Atmos. Chem. Phys.91253doi:10.5194/ACP-9-1253-2009

[13]  Gantt B.Meskhidze N.Kamykowski D.2009A new physically-based quantification of marine isoprene and primary organic aerosol emissions.Atmos. Chem. Phys.94915doi:10.5194/ACP-9-4915-2009

[14]  Yassaa N.Peeken I.Zöllner E.Bluhm K.Arnold S. R.Spracklen D. V.Wernli H.Williams J.2008Evidence for marine production of monoterpenes.Environ. Chem.5391doi:10.1071/EN08047

[15]  WMO, Chapter 2: Halogenated very short-lived substances, in Scientific Assessment of Ozone Depletion: 2006 – Global Ozone Research and Monitoring Project, Report No. 50 2007, pp. 2.1–2.58 (World Meteorological Organization: Geneva, Switzerland).

[16]  WMO, Chapter 1: Long-lived compounds, in Scientific Assessment of Ozone Depletion: 2006 – Global Ozone Research and Monitoring Project, Report No. 50 2007, pp. 1.1–1.63 (World Meteorological Organization: Geneva, Switzerland).

[17]  Davis D.Crawford J.Liu S.McKeen S.Bandy A.Thornton D.Rowland F.Blake D.1996Potential impact of iodine on tropospheric levels of ozone and other critical oxidants.J. Geophys. Res.101D12135doi:10.1029/95JD02727

[18]  Read K. A.Mahajan A. S.Carpenter L. J.Evans M. J.Faria B. V. E.Heard D. E.Hopkins J. R.Lee J. D.2008Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.Nature4531232doi:10.1038/NATURE07035

[19]  Solomon S.Garcia R. R.Ravishankara A. R.1994On the role of iodine in ozone depletion.J. Geophys. Res.9920491doi:10.1029/94JD02028

[20]  Carpenter L. J.Jones C. E.Dunk R. M.Hornsby K. E.Woeltjen J.2009Air–sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean.Atmos. Chem. Phys.91805doi:10.5194/ACP-9-1805-2009

[21]  O’Dowd C. D.Langmann B.Varghese S.Scannell C.Ceburnis D.Facchini M. C.2008A combined organic-inorganic sea-spray source function.Geophys. Res. Lett.35L01801doi:10.1029/2007GL030331

[22]  Methven J.Hoskins B.1999The advection of high resolution tracers by low resolution winds.J. Atmos. Sci.563262doi:10.1175/1520-0469(1999)056<3262:TAOHRT>2.0.CO;2

[23]  Methven J.Evans M.Simmonds P.Spain G.2001Estimating relationships between air-mass origin and chemical composition.J. Geophys. Res.1065005doi:10.1029/2000JD900694

[24]  Methven J.Arnold S. R.O’Connor F. M.Barjat H.Dewey K.Kent J.Brough N.2003Estimating photochemically produced ozone throughout a domain using flight data and a Lagrangian model.J. Geophys. Res.1084271doi:10.1029/2002JD002955

[25]  Colette A.Ancellet G.Menut L.Arnold S. R.2006A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign.Atmos. Chem. Phys.63487doi:10.5194/ACP-6-3487-2006

[26]  Gros V.Williams J.van Aardenne J. A.Salisbury G.Hofmann R.Lawrence M. G.von Kuhlmann R.Lelieveld J.2003Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime European outflow (on Crete in 2001).Atmos. Chem. Phys.31223doi:10.5194/ACP-3-1223-2003

[27]  Mak J. E.Brenninkmeijer C. A. M.1994Compressed-air sample technology for isotopic analysis of atmospheric carbon-monoxide.J. Atmos. Ocean. Technol.11425doi:10.1175/1520-0426(1994)011<0425:CASTFI>2.0.CO;2

[28]  Taddei S.Toscano P.Gioli B.Matese A.Miglietta F.Vaccari F. P.Zaldei A.Custer T.Williams J.2009Carbon dioxide and acetone air–sea fluxes over the Southern Atlantic.Environ. Sci. Technol.435218doi:10.1021/ES8032617

[29]  Hoffmann L.Peeken I.Lochte K.Assmy P.Veldhuis M.2006Different reactions of Southern Ocean phytoplankton size classes to iron fertilization.Limnol. Oceanogr.511217

[30]  Methven J., Offline trajectories: calculation and accuracy. UK Universities Global Atmospheric Modelling Programme, Tech. Rep. 44 1997 (University of Reading: Reading, UK).

[31]  Wanninkhof R.McGillis W. R.1999A cubic relationship between air–sea CO2 exchange and wind speed.Geophys. Res. Lett.261889

[32]  Quack B.Wallace D. W. R.2003Air–sea flux of bromoform: controls, rates, and implications.Global Biogeochem. Cycles171023doi:10.1029/2002GB001890

[33]  Quack B.Petrick G.Peeken I.Nachtigall K.2007Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling.J. Geophys. Res. – Oceans112C100006doi:10.1029/2006JC003803

[34]  Manley S. L.de la Cuesta J. L.1997Methyl iodide production from marine phytoplankton cultures.Limnol. Oceanogr.42142doi:10.4319/LO.1997.42.1.0142

[35]  Scarratt M. G.Moore R. M.1999Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum.Limnol. Oceanogr.44703

[36]  Happell J. D.Wallace D. W. R.1996Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: evidence for photochemical production.Geophys. Res. Lett.232105

[37]  Richter U.Wallace D. W. R.2004Production of methyl iodide in the tropical Atlantic Ocean.Geophys. Res. Lett.31L23S03doi:10.1029/2004GL020779

[38]  Moore R.Zafiriou O.1994Photochemical production of methyl iodide in seawater.J. Geophys. Res.9916415doi:10.1029/94JD00786

[39]  Moore R. M.2006Methyl halide production and loss rates in sea water from field incubation experiments.Mar. Chem.101213doi:10.1016/J.MARCHEM.2006.03.003

[40]  Colomb A.Gros V.Alvain S.Sarda-Esteve R.Bonsang B.Moulin C.Klüpfel T.Williams J.2009Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30–49°S).Environ. Chem.670doi:10.1071/EN08072

[41]  Kritz M.1983Use of long-lived radon daughters as indicators of exchange between the free troposphere and the marine boundary layer.J. Geophys. Res.888569doi:10.1029/JC088IC13P08569

[42]  Devine G. M.Carslaw K. S.Parker D. J.Petch J. C.2006The influence of subgrid surface-layer variability on vertical transport of a chemical species in a convective environment.Geophys. Res. Lett.33L15807doi:10.1029/2006GL025986

[43]  Chapman E. G.Shaw W. J.Easter R. C.Bian X.Ghan S. J.2002Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes.J. Geophys. Res.107D234672doi:10.1029/2001JD001564

[44]  Carpenter L. J.Liss P. S.Penkett S. A.2003Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans.J. Geophys. Res.1084256doi:10.1029/2002JD002769

[45]  Alvain S.Moulin C.Dandonneau Y.Breon F. M.2005Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery.Deep Sea Res. Part I Oceanogr. Res. Pap.521989doi:10.1016/J.DSR.2005.06.015

[46]  Dandonneau Y.Deschamps P.-Y.Nicolas J.-M.Loisel H.Blanchot J.Montel Y.Thieuleux F.Bécu G.2004Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific.Deep Sea Res. Part II Top. Stud. Oceanogr.51303doi:10.1016/J.DSR2.2003.07.018

[47]  Alvain S.Moulin C.Dandonneau Y.Loisel H.2008Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view.Global Biogeochem. Cycles22GB3001doi:10.1029/2007GB003154

[48]  Shaw S. L.Chisholm S. W.Prinn R. G.2003Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton.Mar. Chem.80227doi:10.1016/S0304-4203(02)00101-9

[49]  Li S.-M.Yokouchi Y.Barrie L. A.Muthuramu K.Shepson P. B.Bottenheim J. W.Sturges W. T.Landsberger S.1994Organic and inorganic bromine compounds and their composition in the Arctic troposphere during polar sunrise.J. Geophys. Res.9925415doi:10.1029/93JD03343

[50]  Zhou Y.Varner R. K.Russo R. S.Wingenter O. W.Haase K. B.Talbot R.Sive B. C.2005Coastal water source of short-lived halocarbons in New England.J. Geophys. Res.110D21302doi:10.1029/2004JD005603

[51]  WMO, Chapter 1: Controlled substances and other source gases, in Scientific Assessment of Ozone Depletion: 2002 – Global Ozone Research and Monitoring project, Report No. 47 2003, pp. 1.1–1.83 (World Meteorological Organization: Geneva, Switzerland).

[52]  Groszko W.Moore R. M.1998Ocean-atmosphere exchange of methyl bromide: NW Atlantic and Pacific Ocean studies.J. Geophys. Res.10316737doi:10.1029/98JD00111

[53]  King D. B.Butler J. H.Montzka S. A.Yvon-Lewis S. A.Elkins J. W.2000Implications of methyl bromide supersaturations in the temperate North Atlantic Ocean.J. Geophys. Res.105D1519763doi:10.1029/2000JD900251

[54]  King D. B.Butler J. H.Yvon-Lewis S. A.Cotton S. A.2002Predicting oceanic methyl bromide saturation from SST.Geophys. Res. Lett.292199doi:10.1029/2002GL016091

[55]  McCulloch A.2003Chloroform in the environment: occurrence, sources, sinks and effects.Chemosphere501291doi:10.1016/S0045-6535(02)00697-5

[56]  Kettle A.Andreae M.2000Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models.J. Geophys. Res.10526793doi:10.1029/2000JD900252

[57]  Keller M. D., Bellows W. K., Guillard R. R. L., Dimethylsulfide production in marine phytoplankton, in Biogenic Sulfur in the Environment (Eds E. S. Saltzman, W. J. Cooper) 1989, Symposium Series No. 393, pp. 167–182 (American Chemical Society: Washington, DC).

[58]  Liss P. S.Hatton A. D.Malin G.Nightingale P. D.Turner S. M.1997Marine sulphur emissions.Philos. Trans. R. Soc. Lond. B Biol. Sci.352159doi:10.1098/RSTB.1997.0011

[59]  Gabric A.Murray N.Stone L.Kohl M.1993Modeling the production of dimethylshulfide during a phytoplankton bloom.J. Geophys. Res. – Oceans9822805doi:10.1029/93JC01773

[60]  Malin G.Kirst G. O.1997Algal production of dimethyl sulfide and its atmospheric role.J. Phycol.33889doi:10.1111/J.0022-3646.1997.00889.X

[61]  Belviso S.Kim S. K.Rassoulzadegan F.Krajka B.Nguyen B. C.Mihalopoulos N.Buatmenard P.1990Production of dimethylsulfonium propionate (DMSP) and dimethylsulfide (DMS) by a microbial foodweb.Limnol. Oceanogr.351810doi:10.4319/LO.1990.35.8.1810

[62]  Simó R.2001Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links.Trends Ecol. Evol.16287doi:10.1016/S0169-5347(01)02152-8

[63]  Yassaa N.Lochte C. A. K.Peeken I.Williams J.2006Development and application of a headspace solid-phase microextraction and gas chromatography/mass spectrometry method for the determination of dimethylsulfide emitted by eight marine phytoplankton species.Limnol. Oceanogr. Methods4374

[64]  Evans C.Archer S. D.Jacquet S.Wilson W. H.2003Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population.Aquat. Microb. Ecol.30207

[65]  Andreae M. O.1985Dimethylsulfide in the water column and the sediment porewaters of the Peru upwelling area.Limnol. Oceanogr.301208doi:10.4319/LO.1985.30.6.1208

[66]  Franklin D.Poulton J. A.Steinke M.Young J.Peeken I.Malin G.2009Dimethylsulphide, DMSP-lyase activity and microplankton community structure inside and outside of the Mauritanian upwelling.Prog. Oceanogr.83134doi:10.1016/J.POCEAN.2009.07.011

[67]  Roberts J. M.Fehsenfeld F. C.Liu S. C.Bollinger M. J.Hahn C.Albritton D. L.Sievers R. E.1984Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere: observation of air mass photochemical aging and NOx removal.Atmos. Environ.182421doi:10.1016/0004-6981(84)90012-X

[68]  Heiden A.Kobel K.Komenda M.Koppmann R.Shao M.Wildt J.1999Toluene emissions from plants.Geophys. Res. Lett.261283doi:10.1029/1999GL900220

[69]  White M. L.Russo R. S.Zhou Y.Ambrose J. L.Haase K.Frinak E. K.Varner R. K.Wingenter O. W.2009Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?Atmos. Chem. Phys.981doi:10.5194/ACP-9-81-2009

[70]  Bracher A. U.Vountas M.Dinter T.Burrows J. P.Röttgers R.Peeken I.2009Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data.Biogeosciences6751doi:10.5194/BG-6-751-2009

Export Citation