Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean

J. Williams A K , T. Custer A , H. Riede A , R. Sander A , P. Jöckel A , P. Hoor A , A. Pozzer A B , S. Wong-Zehnpfennig A , Z. Hosaynali Beygi A , H. Fischer A , V. Gros C , A. Colomb D , B. Bonsang C , N. Yassaa A E , I. Peeken F G , E. L. Atlas H , C. M. Waluda I , J. A. van Aardenne J and J. Lelieveld A
+ Author Affiliations
- Author Affiliations

A Max Planck Institute for Chemistry, J. J. Becherweg 27, D-55128 Mainz, Germany.

B Energy, Environment and Water Research Center of the Cyprus Institute, 1645 Nicosia, Cyprus.

C Laboratoire des Sciences du Climat et de l’Environnement, Commissariat à l’Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), F-91191 Gif sur Yvette, France.

D Laboratoire Interuniversitaire des Systèmes Atmosphériques, Unité Mixte de Recherche (UMR) 7583/CNRS, Université Paris 12, 61 av. Général de Gaulle, F-94010 Créteil, France.

E Present address: Faculty of Chemistry, University of Sciences and Technologie Houari Boumediene, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria.

F Alfred Wegener Institute for Polar and Marine Research, Polar Biological Oceanography Am Handelshafen 12, D-27570 Bremerhaven, Germany.

G Present address: Center for Marine Environmental Sciences (MARUM), Leobener Strasse, D-28359 Bremen, Germany.

H Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.

I Biological Sciences Division, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.

J European Commission, Institute for Environment and Sustainability, I-21020 Ispra, Italy.

K Corresponding author. Email: williams@mpch-mainz.mpg.de

Environmental Chemistry 7(2) 171-182 https://doi.org/10.1071/EN09154
Submitted: 27 November 2009  Accepted: 17 February 2010   Published: 22 April 2010

Environmental context. Air over the remote Southern Atlantic Ocean is amongst the cleanest anywhere on the planet. Yet in summer a large-scale natural phytoplankton bloom emits numerous natural reactive compounds into the overlying air. The productive waters also support a large squid fishing fleet, which emits significant amounts of NO and NO2. The combination of these natural and man-made emissions can efficiently produce ozone, an important atmospheric oxidant.

Abstract. Ship-borne measurements have been made in air over the remote South Atlantic and Southern Oceans in January–March 2007. This cruise encountered a large-scale natural phytoplankton bloom emitting reactive hydrocarbons (e.g. isoprene); and a high seas squid fishing fleet emitting NOx (NO and NO2). Using an atmospheric chemistry box model constrained by in-situ measurements, it is shown that enhanced ozone production ensues from such juxtaposed marine biogenic and anthropogenic emissions. The relative impact of shipping and phytoplankton emissions on ozone was examined on a global scale using the EMAC model. Ozone in the marine boundary layer was found to be over ten times more sensitive to NOx emissions from ships, than to marine isoprene in the region south of 45°. Although marine isoprene emissions make little impact on the global ozone budget, co-located ship and phytoplankton emissions may explain the increasing ozone reported for the 40–60°S southern Atlantic region.


Acknowledgements

The OOMPH project was funded under the EU sixth framework program (018419). The QUANTIFY project was funded by the EU within the sixth framework program under 003893. The authors are grateful for logistical support from the IPEV/Aerotrace program during the Southern Ocean cruise. In particular, we thank Jean Sciare for help with co-ordination and Roland Sarda-Esteve, Rolf Hofmann and Thomas Klüpfel for help with instrument operation.


References


[1]   A. M. Grannas , A. E. Jones , J. Dibb , M. Ammann , C. Anastasio , H. J. Beine , M. Bergin , J. Bottenheim , et al. An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys. 2007 , 7,  4329.
        |  CAS |  

[2]   H. B. Singh , L. J. Salas , R. B. Chatfield , E. Czech , A. Fried , J. Walega , M. J. Evans , B. D. Field , et al. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J. Geophys. Res. 2004 , 109,  D15S07.
        | CrossRef |  

[3]   B. Bonsang , C. Polle , G. Lambert , Evidence for marine production of isoprene. Geophys. Res. Lett. 1992 , 19,  1129.
        | CrossRef | CAS |  

[4]   Rodhouse P. G., Elvidge C. D., Trathan P. N., Remote sensing of the global light-fishing fleet: an analysis of interactions with oceanography, other fisheries and predators, in Advances in Marine Biology (Eds A. J. Southward, P. A. Tyler, C. M. Young, L. A. Fuiman) 2001, Vol. 39, pp. 261–303 (Academic Press Inc.: San Diego, CA).

[5]   C. M. Waluda , P. N. Trathan , C. D. Elvidge , V. R. Hobson , P. G. Rodhouse , Throwing light on straddling stocks of Illex argentinus: assessing fishing intensity with satellite imagery. Can. J. Fish. Aquat. Sci. 2002 , 59,  592.
        | CrossRef |  

[6]   C. M. Waluda , H. J. Griffiths , P. G. Rodhouse , Remotely-sensed spatial dynamics of the Illex argentinus fishery, Southwest Atlantic. Fish. Res. 2008 , 91,  196.
        | CrossRef |  

[7]   R. Sander , A. Kerkweg , P. Jöckel , J. Lelieveld , Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys. 2005 , 5,  445.
        |  CAS |  

[8]   F. Flocke , R. L. Herman , R. J. Salawitch , E. Atlas , C. R. Webster , S. M. Schauffler , R. A. Lueb , R. D. May , et al. An examination of the chemistry and transport processes in the tropical lower stratosphere using observations of long-lived and short-lived compounds obtained during STRAT and POLARIS. J. Geophys. Res. – Atmos. 1999 , 104,  26625.
        |  CAS | | CrossRef |  

[9]   S. M. Schauffler , E. L. Atlas , S. G. Donnelly , A. Andrews , S. A. Montzka , J. W. Elkins , D. F. Hurst , P. A. Romashkin , G. S. Dutton , V. Stroud , Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE). J. Geophys. Res. 2003 , 108,  4173.
        | CrossRef |  

[10]   W. Lindinger , A. Hansel , A. Jordan , On-line monitoring of volatile organic compounds at pptv levels by means of proton transfer mass spectrometry (PTR0-MS)-medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 1998 , 173,  191.
        | CrossRef | CAS |  

[11]   J. Williams , U. Pöschl , P. J. Crutzen , A. Hansel , R. Holzinger , C. Warneke , W. Lindinger , J. Lelieveld , An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the tropical rainforest of Surinam. J. Atmos. Chem. 2001 , 38,  133.
        | CrossRef | CAS |  

[12]   V. Gros , B. Bonsang , R. Sarda Esteve , Atmospheric carbon monoxide ‘in situ’ monitoring by automatic gas chromatography. Chemosphere, Glob. Chang. Sci. 1999 , 1,  153.
        | CrossRef | CAS |  

[13]   K. A. Masarie , R. L. Langenfelds , C. E. Allison , T. J. Conway , E. J. Dlugokencky , R. J. Francey , P. C. Novelli , L. P. Steele , et al. NOAA/CSIRO Flask Air Intercomparison Experiment: a strategy for directly assessing consistency among atmospheric measurements made by independent laboratories. J. Geophys. Res. – Atmos. 2001 , 106,  20445.
        | CrossRef | CAS |  

[14]   P. Novelli , J. Collins , R. Myers , G. Sachse , H. Scheel , Reevaluation of the NOAA/CMDL carbon monoxide reference scala and comparisons with CO reference gases at NASA-Langley and the Fraunhofer Institut. J. Geophys. Res. – Atmos. 1994 , 99,  12833.
        |  CAS | | CrossRef |  

[15]   V. Gros , N. Poisson , D. Martin , M. Kanakidou , B. Bonsang , Observations and modeling of the seasonal variation of surface ozone at Amsterdam Island: 1994–1996. J. Geophys. Res. – Atmos. 1998 , 103,  28103.
        | CrossRef | CAS |  

[16]   C. D. Elvidge , K. E. Baugh , J. B. Dietz , T. Bland , P. C. Sutton , H. W. Kroehl , Radiance calibration of DMSP-OLS low light imaging data of human settlements. Remote Sens. Environ. 1999 , 68,  77.
        | CrossRef |  

[17]   P. Jöckel , R. Sander , A. Kerkweg , H. Tost , J. Lelieveld , Technical note: The Modular Earth Submodel System (MESSy) – a new approach towards Earth System Modeling. Atmos. Chem. Phys. 2005 , 5,  433.
         

[18]   E. Roeckner , R. Brokopf , M. Esch , M. Giorgetta , S. Hagemann , L. Kornblueh , E. Manzini , U. Schlese , et al. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climatol. 2006 , 19,  3771.
        | CrossRef |  

[19]   P. Jöckel , H. Tost , A. Pozzer , C. Brühl , J. Buchholz , L. Ganzeveld , P. Hoor , A. Kerkweg , et al. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 2006 , 6,  5067.
         

[20]   A. Kerkweg , J. Buchholz , L. Ganzeveld , A. Pozzer , H. Tost , P. Jöckel , Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmos. Chem. Phys. 2006 , 6,  4617.
        |  CAS |  

[21]   Tost H., Global modelling of cloud, convection and precipitation influences on trace gases and aerosols 2006, PhD Thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn, Germany.

[22]   A. Kerkweg , R. Sander , H. Tost , P. Jöckel , Technical Note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy). Atmos. Chem. Phys. 2006 , 6,  3603.
        |  CAS |  

[23]   van Aardenne J., Dentener F., Olivier J., Peters J., Ganzeveld L., The EDGAR 3.2 Fast Track 2000 dataset (32FT2000) 2005. Available at http://www.mnp.nl/edgar/model/v32ft2000edgar/docv32ft2000/ [Verified 9 June 2009]

[24]   P. Hoor , J. Borken-Kleefeld , D. Caro , O. Dessens , O. Endresen , M. Gauss , V. Grewe , D. Hauglustaine , et al. The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmos. Chem. Phys. 2009 , 9,  3113.
        |  CAS |  

[25]   A. Pozzer , P. Jöckel , R. Sander , J. Williams , L. Ganzeveld , J. Lelieveld , Technical note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species. Atmos. Chem. Phys. 2006 , 6,  5435.
        |  CAS |  

[26]   Pozzer A., Global simulating short lived carbonaceous compounds with an atmospheric chemistry general circulation model 2007, PhD Thesis, University of Mainz, Germany.

[27]   Conkright M., O’Brien T., Stephens C., Locarnini R., Garcia H., Boyer T., Antonov J., Chlorophyll, in World Ocean Atlas 2001 2002, vol. 6, NOOA Atlas, NESDIS 52 (US Government Printing Office).

[28]   W. Broadgate , P. Liss , S. A. Penkett , Seasonal emission of isoprene and other reactive hydrocarbon gases from the ocean. Geophys. Res. Lett. 1997 , 24,  2675.
        | CrossRef | CAS |  

[29]   Falkland Islands Government, Fisheries Department Fishery Statistics 2007, vol. 12 (1998–2007) (FIG Fisheries Department: Stanley, Falkland Islands).

[30]   P. H. Tyedmers , R. Watson , D. Pauly , Fueling global fishing fleets. Ambio 2005 , 34,  635.
        | PubMed |  

[31]   V. Eyring , H. W. Köhler , J. van Aardenne , A. Lauer , Emissions from international shipping. 1. The last 50 years. J. Geophys. Res. – Atmos. 2005 , 110,  D17305.
        | CrossRef |  

[32]   G. Chen , L. G. Huey , M. Trainer , D. Nicks , J. Corbett , T. Ryerson , D. Parrish , J. A. Neuman , et al. An investigation of the chemistry of ship emission plumes during ITCT 2002. J. Geophys. Res. – Atmos. 2005 , 110,  D10S90.
        | CrossRef |  

[33]   Ø. Endresen , E. Sørgård , J. K. Sundet , S. B. Dalsøren , I. S. A. Isaksen , T. F. Berglen , G. Gravir , Emission from international sea transportation and environmental impact. J. Geophys. Res. – Atmos. 2003 , 108,  4560.
        | CrossRef |  

[34]   C. Deniz , Y. Durmusoglu , Estimating shipping emissions in the region of the Sea of Marmara, Turkey. Sci. Total Environ. 2008 , 390,  255.
        | CrossRef | CAS | PubMed |  

[35]   S. Dasgupta , R. P. Singh , M. Kafatos , Comparison of global chlorophyll concentrations using MODIS data. Adv. Space Res. 2009 , 43,  1090.
        | CrossRef | CAS |  

[36]   B. Gantt , N. Meskhidze , D. Kamykowski , A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos. Chem. Phys. 2009 , 9,  4915.
        |  CAS |  

[37]   Y. Yokouchi , H. J. Li , T. Machida , S. Aoki , H. Akimoto , Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform. J. Geophys. Res. – Atmos. 1999 , 104,  8067.
        | CrossRef | CAS |  

[38]   S. R. Arnold , D. V. Spracklen , J. Williams , N. Yassaa , J. Sciare , B. Bonsang , V. Gros , I. Peeken , et al. Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos. Chem. Phys. 2009 , 9,  1253.
        |  CAS |  

[39]   J. Lelieveld , J. van Aardenne , H. Fischer , M. de Reus , J. Williams , P. Winkler , Increasing ozone over the Atlantic Ocean. Science 2004 , 304,  1483.
        | CrossRef | CAS | PubMed |  

[40]   Ø. Endresen , E. Sørgård , H. L. Behrens , P. O. Brett , I. S. A. Isaksen , A historical reconstruction of ships’ fuel consumption and emissions. J. Geophys. Res. – Atmos. 2007 , 112,  D12301.
        | CrossRef |  

[41]   FAO, The State of World Fisheries and Aquaculture 2009, 2008 vol. (Food and Agriculture Organization of the United Nations: Rome).

[42]   S. R. Zorn , F. Drewnick , M. Schott , T. Hoffmann , S. Borrmann , Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer. Atmos. Chem. Phys. Discuss. 2008 , 8,  4831.
         


Full Text PDF (1.5 MB) Export Citation Cited By (6)