Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set

N. M. Donahue A G , W. Chuang A , S. A. Epstein A F , J. H. Kroll B , D. R. Worsnop C D , A. L. Robinson A , P. J. Adams A and S. N. Pandis A E
+ Author Affiliations
- Author Affiliations

A Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15217, USA.

B Department of Civil and Environmental Engineering and Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

C Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821, USA.

D University of Helsinki, Department of Physics, FI-00014 Helsinki, Finland.

E Department of Chemical Engineering, University of Patras, Patra, GR-26500, Greece.

F Present address: Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, CA 92697, USA.

G Corrsponding author. Email: nmd@andrew.cmu.edu

Environmental Chemistry 10(3) 151-157 https://doi.org/10.1071/EN13022
Submitted: 30 January 2013  Accepted: 26 April 2013   Published: 14 June 2013

Environmental context. Fine particles (aerosols) containing organic compounds are central players in two important environmental issues: aerosol-climate effects and human health effects (including mortality). Although organics constitute half or more of the total fine-particle mass, their chemistry is extremely complex; of critical importance is ongoing oxidation chemistry in both the gas phase and the particle phase. Here we present a method for representing that oxidation chemistry when the actual composition of the organics is not known and show that relatively slow oxidant uptake to particles plays a key role in the very existence of organic aerosols.

Abstract. Organic aerosols play a critical role in atmospheric chemistry, human health and climate. Their behaviour is complex. They consist of thousands of organic molecules in a rich, possibly highly viscous mixture that may or may not be in phase equilibrium with organic vapours. Because the aerosol is a mixture, compounds from all sources interact and thus influence each other. Finally, most ambient organic aerosols are highly oxidised, so the molecules are secondary products formed from primary emissions by oxidation chemistry and possibly non-oxidative association reactions in multiple phases, including gas-phase oxidation, aqueous oxidation, condensed (organic) phase reactions and heterogeneous interactions of all these phases. In spite of this complexity, we can make a strong existential statement about organic aerosol: They exist throughout the troposphere because heterogeneous oxidation by OH radicals is more than an order of magnitude slower than comparable gas-phase oxidation.


References

[1]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. Kessler, M. R. Canagaratna, K. Wilson, K. E. Alteri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D.R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.CrossRef | 1:CAS:528:DC%2BC3MXovVGhuw%3D%3D&md5=411e8c0cd7c47820db1acdc81ccb0291CAS | 21258386PubMed |

[2]  A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, X. Wang, The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 2012, 5, 1471.
The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions.CrossRef |

[3]  R. Kamens, H. Jeffries, M. Gery, R. Wiener, K. Sexton, G. Howe, The impact of α-pinene on urban smog formation – an outdoor smog chamber study. Atmos. Environ. 1981, 15, 969.
The impact of α-pinene on urban smog formation – an outdoor smog chamber study.CrossRef | 1:CAS:528:DyaL3MXlsFGmurc%3D&md5=d03a77fd870aab4df560d94cd6886f57CAS |

[4]  H. Jeffries, S. Tonnesen, A comparison of 2 photochemical-reaction mechanisms using mass-balance and process analysis. Atmos. Environ. 1994, 28, 2991.
A comparison of 2 photochemical-reaction mechanisms using mass-balance and process analysis.CrossRef | 1:CAS:528:DyaK2cXntVOiu7Y%3D&md5=9b642e4b25fdf2006c1e86c3a1559803CAS |

[5]  R. M. Kamens, M. Jaoui, Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory. Environ. Sci. Technol. 2001, 35, 1394.
Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory.CrossRef | 1:CAS:528:DC%2BD3MXhsFKisb4%3D&md5=3a7d40f431accc009459b782e1046763CAS | 11348073PubMed |

[6]  W. Vizuete, H. E. Jeffries, T. W. Tesche, E. P. Olaguer, E. Couzo, Issues with ozone attainment methodology for Houston, TX. J. Air Waste Manag. Assoc. 2011, 61, 238.
Issues with ozone attainment methodology for Houston, TX.CrossRef | 1:CAS:528:DC%2BC3MXktFantrg%3D&md5=975db8a82d1421bec2e974bb0f1f5b3eCAS | 21416750PubMed |

[7]  R. Atkinson, Gas phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data 1997, 26, 215.
Gas phase tropospheric chemistry of organic compounds.CrossRef | 1:CAS:528:DyaK2sXivVKjt7c%3D&md5=d817872e808dd158fd76aaf166e469f1CAS |

[8]  R. Prinn, J. Huang, R. Weiss, D. Cunnold, P. Fraser, P. Simmonds, A. McCulloch, C. Harth, S. Reimann, P. Salameh, S. O’Doherty, R. Wang, L. Porter, B. Miller, P. Krummel, Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 2005, 32, L07809.
Evidence for variability of atmospheric hydroxyl radicals over the past quarter century.CrossRef |

[9]  A. H. Goldstein, I. E. Galbally, Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514.
Known and unexplored organic constituents in the Earth’s atmosphere.CrossRef | 1:CAS:528:DC%2BD2sXit1Cnuro%3D&md5=bb559320fbd5146133774d732702004cCAS | 17396635PubMed |

[10]  B. Aumont, S. Szopa, S. Madronich, Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 2005, 5, 2497.
Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach.CrossRef | 1:CAS:528:DC%2BD2MXht1Kgs7rK&md5=b7731775640661953cf3155ee0d7b99cCAS |

[11]  N. M. Donahue, S. A. Epstein, S. N. Pandis, A. L. Robinson, A 2-dimensional volatility basis set: 1. Organic mixing thermodynamics. Atmos. Chem. Phys. 2011, 11, 3303.
A 2-dimensional volatility basis set: 1. Organic mixing thermodynamics.CrossRef | 1:CAS:528:DC%2BC3MXosFWnt7k%3D&md5=88c8540f7bf39a565336ea6d632aeb42CAS |

[12]  N. M. Donahue, J. H. Kroll, A. L. Robinson, S. N. Pandis, A 2-dimensional volatility basis set: 2. Diagnostics of laboratory and ambient organic aerosol. Atmos. Chem. Phys. 2012, 12, 615.
A 2-dimensional volatility basis set: 2. Diagnostics of laboratory and ambient organic aerosol.CrossRef | 1:CAS:528:DC%2BC38XltFShtLg%3D&md5=2d5e8832d506c2d707350bf0b7ecee3dCAS |

[13]  B. Zobrist, C. Marcolli, D. A. Pedernera, T. Koop, Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 2008, 8, 5221.
Do atmospheric aerosols form glasses?CrossRef | 1:CAS:528:DC%2BD1cXhtlCntbfL&md5=ead15b08ae8e1655ac09b7723699b395CAS |

[14]  A. Virtanen, J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirila, J. Leskinen, J. M. Makela, J. K. Holopainen, U. Poeschl, M. Kulmala, D. R. Worsnop, A. Laaksonen, An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824.
An amorphous solid state of biogenic secondary organic aerosol particles.CrossRef | 1:CAS:528:DC%2BC3cXht1yhsLnN&md5=4b3f0c1639337cc4b61d104f9f5ca929CAS | 20944744PubMed |

[15]  T. Koop, J. Bookhold, M. Shiraiwa, U. Poeschl, Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19238.
Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere.CrossRef | 1:CAS:528:DC%2BC3MXhtlKjurjI&md5=ed7c11497d7a64b5803a4e4119f5759eCAS | 21993380PubMed |

[16]  T. D. Vaden, D. Imre, J. Ber’anek, M. Shrivastava, A. Zelenyuk, Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2011, 108, 2190.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BC3MXitFKqt7o%3D&md5=cdf7fa52da4f9ca7663b16cc5a4a6ae4CAS | 21262848PubMed |

[17]  M. Shiraiwa, M. Ammann, T. Koop, U. Poeschl, Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA 2011, 108, 11 003.
Gas uptake and chemical aging of semisolid organic aerosol particles.CrossRef | 1:CAS:528:DC%2BC3MXptV2ht7o%3D&md5=5b9bc22339f34cfe9308d8d6582cc9c1CAS |

[18]  V. Perraud, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre, W. L. Chang, D. Dabdub, J. F. Pankow, B. J. Finlayson-Pitts, Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc. Natl. Acad.Sci. USA 2012, 109, 2836.
Nonequilibrium atmospheric secondary organic aerosol formation and growth.CrossRef | 1:CAS:528:DC%2BC38XjsFyisrk%3D&md5=234ff351a64c52676e6d05c792314385CAS | 22308444PubMed |

[19]  A. P. Grieshop, N. M. Donahue, A. L. Robinson, Is the gas-particle partitioning in α-pinene secondary organic aerosol reversible? Geophys. Res. Lett. 2007, 34, L14810.
Is the gas-particle partitioning in α-pinene secondary organic aerosol reversible?CrossRef |

[20]  J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Tropospheric chemistry: a global perspective. J. Geophys. Res. – Atmos. 1981, 86, 7210.
Tropospheric chemistry: a global perspective.CrossRef | 1:CAS:528:DyaL3MXlslCmtro%3D&md5=48aefba3f2338dfba46569596be17494CAS |

[21]  Y. Rudich, Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev. 2003, 103, 5097.
Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles.CrossRef | 1:CAS:528:DC%2BD3sXmsl2gu7Y%3D&md5=cc6af945c99341c075e638a2af3f5fb3CAS | 14664645PubMed |

[22]  Y. Rudich, N. M. Donahue, T. F. Mentel, Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 2007, 58, 321.
Aging of organic aerosol: bridging the gap between laboratory and field studies.CrossRef | 1:CAS:528:DC%2BD2sXlslSitrY%3D&md5=803b60d7d15db857f9e72799004bbea6CAS | 17090227PubMed |

[23]  M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prévôt, R. Fisseha, E. Weingartner, V. Frankevic, R. Zenobi, U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303, 1659.
Identification of polymers as major components of atmospheric organic aerosols.CrossRef | 1:CAS:528:DC%2BD2cXhvFCnsbc%3D&md5=22b3ffa7e5313fa78091bc3619175ae8CAS | 15016998PubMed |

[24]  M. Tolocka, M. Jang, J. Ginter, F. Cox, R. Kamens, M. Johnston, Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 2004, 38, 1428.
Formation of oligomers in secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD2cXntVaksw%3D%3D&md5=db598c55b8b61241fd9ee7fb51d488cbCAS | 15046344PubMed |

[25]  J. H. Kroll, J. D. Smith, D. L. Che, S. H. Kessler, D. R. Worsnop, K. R. Wilson, Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys. Chem. Chem. Phys. 2009, 11, 8005.
Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol.CrossRef | 1:CAS:528:DC%2BD1MXhtVOrsLzF&md5=64f9a1b3081e1fd55ce59a27a87effa3CAS | 19727507PubMed |

[26]  H. J. Chacon-Madrid, A. A. Presto, N. M. Donahue, Functionalization vs fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation. Phys. Chem. Chem. Phys. 2010, 12, 13 975.
Functionalization vs fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation.CrossRef | 1:CAS:528:DC%2BC3cXhtlSqu7bF&md5=8fc5d098d481daace399f1401971e402CAS |

[27]  H. J. Chacon-Madrid, N. M. Donahue, Fragmentation v. functionalization: chemical aging and organic aerosol formation. Atmos. Chem. Phys. 2011, 11, 10 553.
Fragmentation v. functionalization: chemical aging and organic aerosol formation.CrossRef | 1:CAS:528:DC%2BC38XhtlSjtrw%3D&md5=168c7634ed4990fa54271d3d7f46cefaCAS |

[28]  A. T. Lambe, T. B. Onasch, D. R. Croasdale, J. P. Wright, A. T. Martin, J. P. Franklin, P. Massoli, J. H. Kroll, M. R. Canagaratna, W. H. Brune, D. R. Worsnop, P. Davidovits, Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ. Sci. Technol. 2012, 46, 5430.
Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.CrossRef | 1:CAS:528:DC%2BC38XmtVGktLY%3D&md5=99547f8e5dfb54b9a22b366d952fb49bCAS | 22534114PubMed |

[29]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prévôt, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. D. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere: a new framework connecting measurements to models. Science 2009, 326, 1525.
Evolution of organic aerosols in the atmosphere: a new framework connecting measurements to models.CrossRef | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=70447e216a6708480c842ef4b6cac6a3CAS | 20007897PubMed |

[30]  C. L. Heald, J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, P. Artaxo, A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 2010, 37, L08803.
A simplified description of the evolution of organic aerosol composition in the atmosphere.CrossRef |

[31]  N. L. Ng, M. R. Canagaratna, J. L. Jimenez, P. S. Chhabra, J. H. Seinfeld, D. R. Worsnop, Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys. 2011, 11, 6465.
Changes in organic aerosol composition with aging inferred from aerosol mass spectra.CrossRef | 1:CAS:528:DC%2BC3MXht1yksL3E&md5=8dc244cca7fb9787946e0ef053eb32c3CAS |

[32]  E. S. C. Kwok, R. Atkinson, Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos. Environ. 1995, 29, 1685.
Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update.CrossRef | 1:CAS:528:DyaK2MXmvFCms70%3D&md5=fb28d7e29756c5f9a16e407c80314a3fCAS |

[33]  S. H. Kessler, T. Nah, K. E. Daumit, J. D. Smith, S. R. Leone, C. E. Kolb, D. R. Worsnop, K. R. Wilson, J. H. Kroll, OH initiated heterogeneous aging of highly oxidized organic aerosol. J. Phys. Chem. A 2012, 116, 6358.
OH initiated heterogeneous aging of highly oxidized organic aerosol.CrossRef | 1:CAS:528:DC%2BC38XltVyksb4%3D&md5=bc8ec89d34eac131fe72f769e5fb51b8CAS | 22483038PubMed |

[34]  A. T. Lambe, M. A. Miracolo, C. J. Hennigan, A. L. Robinson, N. M. Donahue, Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes and steranes) in motor oil and diesel primary organic aerosols with OH radicals. Environ. Sci. Technol. 2009, 43, 8794.
Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes and steranes) in motor oil and diesel primary organic aerosols with OH radicals.CrossRef | 1:CAS:528:DC%2BD1MXhtlWisrfN&md5=44c40614427ea80a4cf532588376c850CAS | 19943648PubMed |

[35]  N. M. Donahue, A. L. Robinson, E. R. Trump, I. Riipinen, J. H. Kroll, Volatility and aging of atmospheric organic aerosols. Top. Curr. Chem. in press.
Volatility and aging of atmospheric organic aerosols.CrossRef |

[36]  N. M. Donahue, A. L. Robinson, K. E. Huff Hartz, A. M. Sage, E. A. Weitkamp, Competitive oxidation in atmospheric aerosols: the case for relative kinetics. Geophys. Res. Lett. 2005, 32, L16805.
Competitive oxidation in atmospheric aerosols: the case for relative kinetics.CrossRef |

[37]  A. L. Robinson, N. M. Donahue, W. F. Rogge, Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. J. Geophys. Res. – Atmos. 2006, 111, D03302.
Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context.CrossRef |

[38]  E. A. Weitkamp, A. T. Lambe, N. M. Donahue, A. L. Robinson, Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust. Environ. Sci. Technol. 2008, 42, 7950.
Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust.CrossRef | 1:CAS:528:DC%2BD1cXhtFeqs7vF&md5=0ce62727c9468dfbe79c306c4cfa6a87CAS | 19031886PubMed |

[39]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11 069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.CrossRef | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=181a6701e42d0b51b62842e66c2a2585CAS |

[40]  Y. Tan, Y. B. Lim, K. E. Altieri, S. P. Seitzinger, B. J. Turpin, Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal. Atmos. Chem. Phys. 2012, 12, 801.
Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal.CrossRef | 1:CAS:528:DC%2BC38XltFShtbY%3D&md5=746e6cf5980a9f614fe57e12fecafa8bCAS |

[41]  D. Hoffmann, A. Tilgner, Y. Iinuma, H. Herrmann, Atmospheric stability of levoglucosan: a detailed laboratory and modelling study. Environ. Sci. Technol. 2010, 44, 694.
Atmospheric stability of levoglucosan: a detailed laboratory and modelling study.CrossRef | 1:CAS:528:DC%2BD1MXhsFGkurfP&md5=15c7898bef2c0c0b0a000ef6ab740a58CAS | 20000815PubMed |

[42]  A. A. May, R. Saleh, C. J. Hennign, N. M. Donahue, A. L. Robinson, Volatility of organic molecular markers used for source apportionment analysis: measurements and atmospheric implications. Environ. Sci. Technol. 2012, 46, 12 435.
Volatility of organic molecular markers used for source apportionment analysis: measurements and atmospheric implications.CrossRef | 1:CAS:528:DC%2BC38XhsVWhtLbF&md5=eb391e7ce7f8b608c8972e0e3e625001CAS |

[43]  C. J. Hennigan, A. P. Sullivan, J. Jeffrey, L. Collett, A. L. Robinson, Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys. Res. Lett. 2010, 37, L09806.
Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals.CrossRef |

[44]  L. Hildebrandt, E. Kostenidou, V. A. Lanz, A. S. H. Prévôt, U. Baltensperger, N. Mihalopoulos, A. Laaksonen, N. M. Donahue, S. N. Pandis, Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis. Atmos. Chem. Phys. 2011, 11, 12 499.
Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis.CrossRef | 1:CAS:528:DC%2BC38XitVKltrY%3D&md5=5e5580ab5d065126d7cea01e8b20f001CAS |

[45]  A. A. Presto, N. M. Donahue, Investigation of α-pinene + ozone secondary organic aerosol formation at low total aerosol mass. Environ. Sci. Technol. 2006, 40, 3536.
Investigation of α-pinene + ozone secondary organic aerosol formation at low total aerosol mass.CrossRef | 1:CAS:528:DC%2BD28XjvVKjsLs%3D&md5=6d2a4bc12491c7ba5328ecdbec1135faCAS | 16786691PubMed |

[46]  B. N. Murphy, N. M. Donahue, C. Fountoukis, M. Dall’Osto, C. O’Dowd, A. Kiendler-Scharr, S. N. Pandis, Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies. Atmos. Chem. Phys. 2012, 12, 10 797.
Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies.CrossRef | 1:CAS:528:DC%2BC3sXhvFOht7w%3D&md5=e2d5737a7dc8316b688535a9ea63591bCAS |

[47]  N. M. Donahue, K. M. Henry, T. F. Mentel, A. K. Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K. H. Naumann, O. Möhler, T. Leisner, L. Müller, M.-C. Reinnig, T. Hoffmann, K. Salow, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Prévôt, U. Baltensperger, Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA 2012, 109, 13 503.
Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions.CrossRef | 1:CAS:528:DC%2BC38XhsVaqurjI&md5=ba600c91d2bd730a3f73dea7f2449ab6CAS |

[48]  K. M. Wagstrom, S. N. Pandis, Determination of the age distribution of primary and secondary aerosol species using a chemical transport model. J. Geophys. Res. – Atmos. 2009, 114, D14303.
Determination of the age distribution of primary and secondary aerosol species using a chemical transport model.CrossRef |

[49]  H. Berresheim, C. Plass-Dulmer, T. Elste, N. Mihalopoulos, F. Rohrer, OH in the coastal boundary layer of Crete during MINOS: measurements and relationship with ozone photolysis. Atmos. Chem. Phys. 2003, 3, 639.
OH in the coastal boundary layer of Crete during MINOS: measurements and relationship with ozone photolysis.CrossRef | 1:CAS:528:DC%2BD3sXpsFClsbY%3D&md5=c05a1edeb04a290549a6d63761d32c3bCAS |

[50]  L. Hildebrandt, E. Kostenidou, B. H. Lee, N. Mihalopoulos, D. R. Worsnop, N. M. Donahue, S. N. Pandis, Formation of low-volatility oxygenated organic aerosol in the atmosphere: insights from the Finokalia Aerosol Measurement Experiments. Geophys. Res. Lett. 2010, 37, L23801.
Formation of low-volatility oxygenated organic aerosol in the atmosphere: insights from the Finokalia Aerosol Measurement Experiments.CrossRef |


Full Text PDF (523 KB) Export Citation Cited By (29)