Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Variations in mercury concentration within and across lichen Xanthoparmelia spp. individuals: implications for evaluating histories of contaminant loading and sampling design

Paul T. Gremillion A E , Edyth Hermosillo A D , Ken G. Sweat B and James V. Cizdziel C
+ Author Affiliations
- Author Affiliations

A Civil Engineering, Construction Management & Environmental Engineering Department, Northern Arizona University, 15600 S. McConnell Drive, Flagstaff, AZ 86011, USA.

B School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Phoenix, AZ 85069, USA.

C Department of Chemistry & Biochemistry, 305 Coulter Hall, University of Mississippi, University, MS 38677, USA.

D Present address: United States Geological Survey, 2995 S. Pacific Avenue, Suite B, Yuma, AZ 85364, USA.

E Corresponding author. Email: paul.gremillion@nau.edu

Environmental Chemistry 10(5) 395-402 https://doi.org/10.1071/EN13053
Submitted: 2 March 2013  Accepted: 16 July 2013   Published: 30 August 2013

Environmental context. Lichens have been widely used as biomonitors of atmospheric pollution in the absence of high-density ambient monitoring networks. This study examines the potential for the lichen Xanthoparmelia spp. as a recorder of temporal histories of mercury deposition to the landscape.

Abstract. Effects of thallus size and internal zonation on the Hg concentration in the foliose lichen Xanthoparmelia spp. were investigated. Size and zonation effects, if present, provide the potential for temporal records of atmospheric deposition to be recorded in lichens. Our results (n = 49; 0.4–13.8 cm in diameter) indicated no significant relationship between Hg and size, although thalli less than 2 cm in diameter tended towards lower Hg concentrations; and no zonation of Hg within thalli. Distinct zonation of Hg in thalli has been reported in some studies, but not in others, indicating regulatory mechanisms result by which Hg is released or relocated within the thallus under certain conditions. A secondary objective was to evaluate the variability of Hg in lichen individuals to drive future sampling designs. Within a size range of 2–8 cm in diameter, we observed Hg = 154 ± 30 ppb (mean ± s.d., n = 38). Bootstrap analysis of this dataset indicated that for a sample size of n = 3 thalli, we can expect a 94 % probability that the variability in our sample set will be at least as low as that observed in other studies of Hg in lichen (s.d. ≈50 ppb Hg).


References

[1]  R. Bargagli, Plant leaves and lichens as biomonitors of natural and anthropogenic emissions of mercury, in Plants as Biomonitors: Indicators for Heavy Metals in the Terrestrial Environment (Ed B. Markert) 1993, pp. 461–484 (VCH: New York).

[2]  R. M. Godinho, T. G. Verburg, M. C. Freitas, H. Th. Wolterbeek, Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environ. Pollut. 2009, 157, 102.
Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGgsbzI&md5=cbc20c6cc3c9454976ae59a31b288ebbCAS | 18799248PubMed |

[3]  P. L. Nimis, S. Andreussi, E. Pittao, The performance of two lichen species as bioaccumulators of trace metals. Sci. Total Environ. 2001, 275, 43.
The performance of two lichen species as bioaccumulators of trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVCksr4%3D&md5=cc637ac96b2fa9e0e0665848027046e1CAS | 11482402PubMed |

[4]  S. Loppi, L. Nelli, S. Ancora, R. Bargagli, Accumulation of trace elements in the peripheral and central parts of a foliose lichen thallus. Bryologist 1997, 100, 251.
| 1:CAS:528:DyaK2sXltlKitrk%3D&md5=cbfa15fe7e18c32a9d0038d22897f134CAS |

[5]  R. Bargagli, F. P. Iosco, M. L. D’Amato, Zonation of trace metal accumulation in three species of epiphytic lichens belonging to the genus Parmelia. Cryptogam., Bryol., Lichenol. 1987, 8, 331.
| 1:CAS:528:DyaL1cXhtFyjs7s%3D&md5=04c800e4d98c00f24b8734a1ac3deca8CAS |

[6]  K. G. Sweat, P. T. Gremillion, T. H. Nash, Mercury concentrations in the lichen Xanthoparmelia spp. in the greater Grand Canyon region of Arizona, USA. Bibl. Lichenol. 2010, 105, 93.

[7]  Y. Agnan, N. Séjalon-Delmas, A. Probst, Comparing early twentieth century and present-day atmospheric pollution in SW France: a story of lichens. Environ. Pollut. 2013, 172, 139.
Comparing early twentieth century and present-day atmospheric pollution in SW France: a story of lichens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12iu7fJ&md5=723755e630bef600a39a7faa818d5001CAS | 23063614PubMed |

[8]  R. M. Godinho, H. Th. Wolterbeek, T. Verburg, M. C. Freitas, Biocaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ. Pollut. 2008, 151, 318.
Biocaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGqsb8%3D&md5=a638696a862d4317830e5a6767de834dCAS | 17719707PubMed |

[9]  L. Bergamaschi, E. Rizzio, G. Giaveri, S. Loppi, M. Gallorini, Comparison between the accumulation capacity of four lichen species transplanted to an urban site. Environ. Pollut. 2007, 148, 468.
Comparison between the accumulation capacity of four lichen species transplanted to an urban site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFOhsrY%3D&md5=a04360d2ec2c6d7272617a02a593ba85CAS | 17258850PubMed |

[10]  J. Garty, Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit. Rev. Plant Sci. 2001, 20, 309.
Biomonitoring atmospheric heavy metals with lichens: theory and application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVOnur0%3D&md5=94bed92efbed80a8d2db890f2263c752CAS |

[11]  K. Boonpragob, T. H. Nash, Seasonal variation of elemental status in the lichen Ramalina menziesii tayl. from two sites in southern California: evidence of dry deposition accumulation. Environ. Exp. Bot. 1990, 30, 415.
Seasonal variation of elemental status in the lichen Ramalina menziesii tayl. from two sites in southern California: evidence of dry deposition accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFCnsbk%3D&md5=c346e48003dffc2d44ca7bc3bc6b0c11CAS |

[12]  M. A. Reis, L. C. Alves, M. C. Freitas, B. van Os, H. Th. Wolterbeek, Lichens (Parmelia sulcata) time response model to environmental elemental availability. Sci. Total Environ. 1999, 232, 105.
Lichens (Parmelia sulcata) time response model to environmental elemental availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVCms70%3D&md5=facd6c302f54d77c6c4b72c625480d2fCAS |

[13]  D. A. Walther, G. J. Ramelow, J. N. Beck, J. C. Young, J. D. Callahan, M. F. Marcon, Temporal changes in metal levels of the lichens Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana. Water Air Soil Pollut. 1990, 53, 189.
Temporal changes in metal levels of the lichens Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXoslOgtA%3D%3D&md5=225d788142a4c9780bbc9d690dcddec9CAS |

[14]  R. A. Armstrong, T. Bradwell, Growth of foliose lichens: a review. Symbiosis 2011, 53, 1.
Growth of foliose lichens: a review.Crossref | GoogleScholarGoogle Scholar |

[15]  40 CFR Appendix B to Part 136 – Definition and Procedure for the Determination of the Method Detection Limit – Revision 1.11 2011 (US Environmental Protection Agency). Available at http://www.gpo.gov/fdsys/granule/CFR-2011-title40-vol23/CFR-2011-title40-vol23-part136-appB/content-detail.html [Verified 7 August 2013].

[16]  L. Brabyn, A. Green, C. Beard, R. Seppelt, GIS goes nano: vegetation studies in Victoria Land, Antarctica. N. Z. Geog. 2005, 61, 139.
GIS goes nano: vegetation studies in Victoria Land, Antarctica.Crossref | GoogleScholarGoogle Scholar |

[17]  T. Wasklewicz, D. Staley, M. Mihir, L. Serutine, Virtual recording of lichen species: integrating terrestrial laser scanning and GIS techniques. Phys. Geogr. 2007, 28, 183.
Virtual recording of lichen species: integrating terrestrial laser scanning and GIS techniques.Crossref | GoogleScholarGoogle Scholar |

[18]  B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap, Monographs on statistics and applied probability, Vol. 57 1994 (Chapman & Hall and CRC).

[19]  R. A. Armstrong, Lichen competition: two-dimensional warfare in slow motion. Microbiologist 2008, 2008, 27.

[20]  A. Senhou, A. Chouak, R. Cherkaoui, Z. Mouita, M. Lferde, A. Elyahyaoui, T. El Khoukhi, M. Bounakhla, K. Embarche, A. Gaudry, S. Ayrault, M. Moskura, Sensitivity of biomonitors and local variations of element concentrations in air pollution biomonitoring. J. Radioanal. Nucl. Chem. 2002, 254, 343.
Sensitivity of biomonitors and local variations of element concentrations in air pollution biomonitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFSms7Y%3D&md5=b151eea36d7096781e98dcb066316237CAS |

[21]  R. A. Armstrong, Are metal ions accumulated by saxicolous lichens growing in a rural environment? Environ. Exp. Bot. 1997, 38, 73.
Are metal ions accumulated by saxicolous lichens growing in a rural environment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlOnsLk%3D&md5=84c6e54cdbd4927f5dd3370914075612CAS |

[22]  M. Bačkor, S. Loppi, Interactions of lichens with heavy metals. Biol. Plant. 2009, 53, 214.
Interactions of lichens with heavy metals.Crossref | GoogleScholarGoogle Scholar |

[23]  R. Goyal, M. R. D. Seaward, Metal uptake in terricolous lichens III. Translocation in the thallus of Peltigera canina. New Phytol. 1982, 90, 85.
Metal uptake in terricolous lichens III. Translocation in the thallus of Peltigera canina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtF2hu7o%3D&md5=56e7148b9b0496164dc7788d63b89d81CAS |

[24]  T. H. Nash, Lichens as bioindicators of sulfur dioxide. Symbiosis 2002, 33, 1.
| 1:CAS:528:DC%2BD38Xoslymt7w%3D&md5=15db9dcc8cd40f5e886dfc02bd01037dCAS |

[25]  L. H. Geiser, S. E. Jovan, D. A. Glavich, M. K. Porter, Lichen-based critical loads for atmospheric nitrogen deposition in western Oregon and Washington forests, USA. Environ. Pollut. 2010, 158, 2412.
Lichen-based critical loads for atmospheric nitrogen deposition in western Oregon and Washington forests, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWjs7w%3D&md5=b17cd7aab10b796f17a9c0abbe7bcc08CAS | 20447744PubMed |

[26]  L. Zhang, L. Paige Wright, P. Blanchard, A review of current knowledge concerning dry deposition of atmospheric mercury. Atmos. Environ. 2009, 43, 5853.
A review of current knowledge concerning dry deposition of atmospheric mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersrbN&md5=f8f33f6ecc361445815d3471da5dc4beCAS |

[27]  C. A. Caldwell, P. Swartzendruber, E. Prestbo, Concentration and dry deposition of mercury species in arid south central New Mexico. Environ. Sci. Technol. 2006, 40, 7535.
Concentration and dry deposition of mercury species in arid south central New Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSrs73P&md5=ed78f6486b5966505be0b74a1d75f109CAS | 17256491PubMed |

[28]  M. Saeki, K. Kunii, T. Seki, K. Sugiyama, T. Suzuki, S. Shishido, Metal burden of urban lichens. Environ. Res. 1977, 13, 256.
Metal burden of urban lichens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktVSkt7s%3D&md5=0017120a25e94df8199ee90be3d1a61eCAS | 862598PubMed |

[29]  S. Yenisoy-Karakaş, S. G. Tuncel, Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parieitina (L.) Th. Fr. Sci. Total Environ. 2004, 329, 43.
Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parieitina (L.) Th. Fr.Crossref | GoogleScholarGoogle Scholar | 15262157PubMed |

[30]  S. Loppi, S. A. Pirintsos, Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ. Pollut. 2003, 121, 327.
Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlWjsb0%3D&md5=1918ce3b48d7ce72ee45e48bd3a2b420CAS | 12685761PubMed |

[31]  S. Loppi, I. Bonini, Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt Amiata, central Italy). Chemosphere, 2000, 41, 1333.
Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt Amiata, central Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlOitrg%3D&md5=b1a0bfa1078278bafc05ee0658e85cdeCAS |

[32]  T. N. Nash, M. R. Sommerfeld, L. L. Sigal, Preliminary study of floristics and elemental concentrations of lichens from Chaco Canyon National Monument, New Mexico. J. Ariz. Nev. Acad. Sci. 1983, 18, 53.