Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Arsenic metabolism in cyanobacteria

Shin-ichi Miyashita A D , Chisato Murota B , Keisuke Kondo B , Shoko Fujiwara B D and Mikio Tsuzuki B C
+ Author Affiliations
- Author Affiliations

A Environmental Standards Group, Research Institute for Materials and Chemical Measurement, National Metrology Institute of Japan (NMIJ)/AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.

B School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan.

C JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.

D Corresponding authors. Emails: shinichi-miyashita@aist.go.jp; fujiwara@toyaku.ac.jp




Shin-ichi Miyashita is a researcher at the National Metrology Institute of Japan (NMIJ) in the National Institute of Advanced Industrial Science and Technology (AIST). He is an analytical chemist holding a Ph.D. in Life Sciences from the Tokyo University of Pharmacy and Life Sciences (TUPLS) in Tokyo, Japan. His current research focuses on the development of matrix certified reference materials for determination and speciation of elements in environmental and food matrices, and development of high-throughput technologies for single-cell elemental analysis using inductively coupled plasma spectrometries.



Chisato Murota received a Masters degree in Life Sciences from TUPLS in 2010 and has worked in the Japan Environmental Measurement and Chemical Analysis Association (JEMCA) since 2011. She has been enrolled in a doctoral course of the same university since 2014. She has studied the function and the gene expression of phosphate transporters of Chlamydomonas reinhardtii and cyanobacteria in phosphate and arsenate uptake.



Keisuke Kondo received a Masters degree in Life Sciences from TUPLS in 2012 and now works in a company for extracorporeal diagnostics medicines. In TUPLS, he studied the mechanisms of arsenic uptake and metabolism and the mitigation strategies in green algae and cyanobacteria.



Shoko Fujiwara is an Associate Professor in the School of Life Sciences of TUPLS. She is a plant physiologist and her research focuses on the carbon fixation of photosynthetic microorganisms (microalgae and cyanobacteria) and the effects of arsenic on their growth. She has been studying the arsenic resistance mechanisms of microorganisms for more than 10 years.



Mikio Tsuzuki is a Professor in the School of Life Sciences at TUPLS. His major interest is in algal and cyanobacterial physiology, focussing on photosynthetic carbon fixation. Arsenate tolerance observed in photosynthetic microorganisms is one of his subjects on environmental stresses in photosynthesis.

Environmental Chemistry 13(4) 577-589 https://doi.org/10.1071/EN15071
Submitted: 28 July 2014  Accepted: 4 September 2015   Published: 16 November 2015

Environmental context. Cyanobacteria are ecologically important, photosynthetic organisms that are widely distributed throughout the environment. They play a central role in arsenic transformations in terms of both mineralisation and formation of organoarsenic species as the primary producers in aquatic ecosystems. In this review, arsenic resistance, transport and biotransformation in cyanobacteria are reviewed and compared with those in other organisms.

Abstract. Arsenic is a toxic element that is widely distributed in the lithosphere, hydrosphere and biosphere. Some species of cyanobacteria can grow in high concentrations of arsenate (pentavalent inorganic arsenic compound) (100 mM) and in low-millimolar concentrations of arsenite (trivalent inorganic arsenic compound). Arsenate, which is a molecular analogue of phosphate, is taken up by cells through phosphate transporters, and inhibits oxidative phosphorylation and photophosphorylation. Arsenite, which enters the cell through a concentration gradient, shows higher toxicity than arsenate by binding to sulfhydryl groups and impairing the functions of many proteins. Detoxification mechanisms for arsenic in cyanobacterial cells include efflux of intracellular inorganic arsenic compounds, and biosynthesis of methylarsonic acid and dimethylarsinic acid through methylation of intracellular inorganic arsenic compounds. In some cyanobacteria, ars genes coding for an arsenate reductase (arsC), a membrane-bound protein involved in arsenic efflux (arsB) and an arsenite S-adenosylmethionine methyltransferase (arsM) have been found. Furthermore, cyanobacteria can produce more complex arsenic species such as arsenosugars. In this review, arsenic metabolism in cyanobacteria is reviewed, compared with that in other organisms. Knowledge gaps remain regarding both arsenic transport (e.g. uptake of methylated arsenicals and excretion of arsenate) and biotransformation (especially production of lipid-soluble arsenicals). Further studies in these areas are required, not only for a better understanding of the role of cyanobacteria in the circulation of arsenic in aquatic environments, but also for their application to arsenic bioremediation.


References

[1]  M. Leermakers, W. Baeyens, M. De Gieter, B. Smedts, C. Meert, H. C. De Bisschop, R. Morabito, Ph. Quevauviller, Toxic arsenic compounds in environmental samples: speciation and validation. TrAC – Trend. Anal. Chem. 2006, 25, 1.
| 1:CAS:528:DC%2BD28XlvFyn&md5=f30cd6ee46b006fa2f00f582328f0571CAS |

[2]  K. A. Francesconi, J. S. Edmonds, Arsenic and marine organisms. Adv. Inorg. Chem. 1997, 44, 147.
| 1:CAS:528:DyaK2sXhsVajtbs%3D&md5=3c19cc149dd77659449965ff11f0b38cCAS |

[3]  S. McSheehy, P. Pohl, R. Łobiński, J. Szpunar, Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS). Analyst (Lond.) 2001, 126, 1055.
Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS).CrossRef | 1:CAS:528:DC%2BD3MXkvVyhsbo%3D&md5=db24284a4305279676b921dfcc803802CAS |

[4]  M. Azizur Rahman, H. Hasegawa, R. P. Lim, Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118.
Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain.CrossRef | 1:CAS:528:DC%2BC38XotVansrs%3D&md5=4e5f4c7fc22069df067c0710fbf803eeCAS |

[5]  X. X. Yin, J. Chen, J. Qin, G. X. Sun, B. P. Rosen, Y. G. Zhu, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156, 1631.
Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.CrossRef | 1:CAS:528:DC%2BC3MXptFWksbY%3D&md5=10eeee15cfa1575560f2bec85eb82446CAS | 21562336PubMed |

[6]  X. X. Yin, L. H. Wang, R. Bai, H. Huang, G. X. Sun, Accumulation and transformation of arsenic in the blue-green alga Synechocystis sp. PCC6803. Water Air Soil Pollut. 2011, 223, 1183.
Accumulation and transformation of arsenic in the blue-green alga Synechocystis sp. PCC6803.CrossRef |

[8]  T. R. Kulp, S. E. Hoeft, M. Asao, M. T. Madigan, J. T. Hollibaugh, J. C. Fisher, J. F. Stolz, C. W. Culbertson, L. G. Miller, R. S. Oremland, Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 2008, 321, 967.
Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California.CrossRef | 1:CAS:528:DC%2BD1cXpslWrurY%3D&md5=ce4a73971557b9c54eae41ca6c2ea701CAS | 18703741PubMed |

[9]  J. Yen, C. Rensing, B. P. Rosen, Y. G. Zhu, Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 2012, 17, 1.

[10]  T. Kaise, Y. Oya-Ohta, T. Ochi, T. Okubo, K. Hanaoka, K. J. Irgolic, T. Sakurai, C. Matsubara, Toxicological study of organic arsenic compound in marine algae using mammalian cell culture technique. Shokuhin Eiseigaku Zasshi 1996, 37, 135.
Toxicological study of organic arsenic compound in marine algae using mammalian cell culture technique.CrossRef |

[11]  H. F. Terwelle, E. C. Slater, Uncoupling of respiratory-chain phosphorylation by arsenate. Biochem. Biophys. Acta–Bioenergetics 1967, 143, 1.
| 1:CAS:528:DyaF2sXksVSisL0%3D&md5=1227bde9f4865886aee266dc2e6e19feCAS |

[12]  R. K. Crane, F. Lipmann, The effect of arsenate on aerobic phosphorylation. J. Biol. Chem. 1953, 201, 235.
| 1:CAS:528:DyaG3sXkvVagtQ%3D%3D&md5=3406fc90d01f8587b584c76b78040de8CAS | 13044791PubMed |

[13]  T. Horio, J. Yamashita, Site of photosynthetic electron-transport systems coupling phosphorylation with chromatophores from Rhodospirillum rubrum. Biochem. Biophys. Acta 1964, 88, 237.
| 1:CAS:528:DyaF2cXkvVGgsL4%3D&md5=23e4a1059f080a77ede2af7bdfd6c846CAS | 14249833PubMed |

[14]  T. Horio, K. Nishikawa, M. Katsumata, J. Yamashita, Possible partial reactions of the photophosphorylation process in chromatophores from Rhodospirillum rubrum. Biochem. Biophys. Acta–Biophysics including Photosynthesis 1965, 94, 371.
| 1:CAS:528:DyaF2MXosVeitw%3D%3D&md5=6d8205d407ea051b3cf77b89ce3d6724CAS |

[15]  M. Avron, A. T. Jagendorf, Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J. Biol. Chem. 1959, 234, 967.
| 1:CAS:528:DyaG1MXnvVChtQ%3D%3D&md5=0c4478a319518a516d7e64852933ed76CAS | 13654301PubMed |

[16]  B. R. Selman, S. Selman-Reimer, The steady state kinetics of photophosphorylation. J. Biol. Chem. 1961, 256, 1722.

[17]  S. Van Herreweghe, R. Swennena, C. Vandecasteeleb, V. Cappuyns, Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ. Pollut. 2003, 122, 323.
Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples.CrossRef | 1:CAS:528:DC%2BD3sXkvVOktA%3D%3D&md5=54e144063a79e8d064048a56235fac08CAS | 12547522PubMed |

[18]  X. C. Le, M. Ma, Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection. J. Chromatogr. A 1997, 764, 55.
Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection.CrossRef | 1:CAS:528:DyaK2sXjtlGqsLg%3D&md5=6343dcaa24d3e719d2ad70f5d2f4d2d2CAS |

[19]  W. R. Cullen, The toxicity of trimethylarsine: an urban myth. J. Environ. Monit. 2005, 7, 11.
The toxicity of trimethylarsine: an urban myth.CrossRef | 1:CAS:528:DC%2BD2cXhtFSnt77I&md5=1efd81b089dee1b4165e953de4dfb8f8CAS | 15693178PubMed |

[20]  P. Andrewes, D. M. Demarini, K. Funasaka, K. Wallace, V. W. M. Lai, H. Sun, W. R. Cullen, K. T. Kitchin, Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environ. Sci. Technol. 2004, 38, 4140.
Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar.CrossRef | 1:CAS:528:DC%2BD2cXlsF2itLw%3D&md5=a6b5d0a3ea08891d4d8f3ae066dcc78bCAS | 15352453PubMed |

[21]  M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289.
Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.CrossRef | 1:CAS:528:DC%2BD3cXnt1Wjtb8%3D&md5=e27d5620e9ae2eca6e73dc62b88427daCAS | 11005674PubMed |

[22]  J. R. Shaw, S. P. Glaholt, N. S. Greenberg, R. Sierra-Alvarez, C. L. Folt, Acute toxicity of arsenic to Daphnia pulex: influence of organic functional groups and oxidation state. Environ. Toxicol. Chem. 2007, 26, 1532.
Acute toxicity of arsenic to Daphnia pulex: influence of organic functional groups and oxidation state.CrossRef | 1:CAS:528:DC%2BD2sXnt1Crtbo%3D&md5=33ee9c693696af7ebc07ac3f3d6926c1CAS | 17665696PubMed |

[23]  Z. Gong, X. Lu, W. R. Cullen, X. C. Le, Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. J. Anal. At. Spectrom. 2001, 16, 1409.
Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid.CrossRef | 1:CAS:528:DC%2BD3MXovFKitbs%3D&md5=f776e087b6e2c21ba7526cea982c246eCAS |

[24]  S. Miyashita, S. Fujiwara, M. Tsuzuki, T. Kaise, Cyanobacteria produce arsenosugars. Environ. Chem. 2012, 9, 474.
Cyanobacteria produce arsenosugars.CrossRef | 1:CAS:528:DC%2BC38XhslSmtrrF&md5=8d4838f9170bb3695af1b3da67d0c9deCAS |

[25]  T. Thiel, Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J. Bacteriol. 1988, 170, 1143.
| 1:CAS:528:DyaL1cXhs1Cmsbo%3D&md5=8e15d137bfb72f431b8fccd4ae1236e4CAS | 3125150PubMed |

[26]  S. Miyashita, S. Fujiwara, M. Tsuzuki, T. Kaise, Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 2011, 75, 522.
Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BC3MXltF2lsL8%3D&md5=a5ab9d6374f395f452ae278fbebb8b3eCAS | 21389618PubMed |

[27]  W. Goessler, J. Lintschinger, J. Szakova, P. Mader, J. Kopecky, J. Doucha, Chlorella sp. and arsenic compounds: an attempt to prepare an algal reference material for arsenic compounds. Appl. Organomet. Chem. 1997, 11, 57.
Chlorella sp. and arsenic compounds: an attempt to prepare an algal reference material for arsenic compounds.CrossRef | 1:CAS:528:DyaK2sXht1aitLo%3D&md5=208b16c16b8a903a5f84a85e5a4b365fCAS |

[28]  G. Lunde, The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae. Acta Chem. Scand. 1973, 27, 1586.
The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae.CrossRef | 1:CAS:528:DyaE3sXltlCitbY%3D&md5=3ec8059e711cef719b8620c5b3c58f23CAS | 4206263PubMed |

[29]  L. A. Murray, A. Raab, I. L. Marr, J. Feldmann, Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl. Organomet. Chem. 2003, 17, 669.
Biotransformation of arsenate to arsenosugars by Chlorella vulgaris.CrossRef | 1:CAS:528:DC%2BD3sXmvFOrtL4%3D&md5=6a98d2ee6dbe65f80c056d9705de860bCAS |

[30]  Y. Yamaoka, O. Takimura, H. Fuse, K. Kamimura, Effects of arsenic on the organic component of the alga Dunaliella salina. Appl. Organomet. Chem. 1992, 6, 357.
Effects of arsenic on the organic component of the alga Dunaliella salina.CrossRef | 1:CAS:528:DyaK38XltVOrur0%3D&md5=08e0131f08679dafc8f4c46e663d6177CAS |

[31]  W. R. Cullen, L. G. Harrison, H. Li, G. Hewitt, Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus. Appl. Organomet. Chem. 1994, 8, 313.
Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus.CrossRef | 1:CAS:528:DyaK2cXlslCru7Y%3D&md5=f4162435ea222175ae95bdb9a79f0c91CAS |

[32]  S. Maeda, K. Kumeda, M. Maeda, S. Higashi, T. Takeshita, Bioaccumulation of arsenic by freshwater algae (Nostoc sp.) and the application to the removal of inorganic arsenic from an aqueous phase. Appl. Organomet. Chem. 1987, 1, 363.
Bioaccumulation of arsenic by freshwater algae (Nostoc sp.) and the application to the removal of inorganic arsenic from an aqueous phase.CrossRef | 1:CAS:528:DyaL1cXlt1Gqtw%3D%3D&md5=9f0a2843bb26446efc1f02970bb15d84CAS |

[33]  S. Maeda, K. Mawatari, A. Ohki, K. Naka, Arsenic metabolism in a freshwater food chain: blue-green alga (Nostoc sp.) → shrimp (Neocaridina denticulata) → carp (Cyprinus carpio). Appl. Organomet. Chem. 1993, 7, 467.
Arsenic metabolism in a freshwater food chain: blue-green alga (Nostoc sp.) → shrimp (Neocaridina denticulata) → carp (Cyprinus carpio).CrossRef | 1:CAS:528:DyaK2cXht12qsbw%3D&md5=90add154e17984fbfc6951cac8506516CAS |

[34]  S. Maeda, S. Fujita, A. Ohki, I. Yoshifuku, S. Higashi, T. Takeshita, Arsenic accumulation by arsenic-tolerant freshwater blue-green alga (Phormidium sp.). Appl. Organomet. Chem. 1988, 2, 353.
Arsenic accumulation by arsenic-tolerant freshwater blue-green alga (Phormidium sp.).CrossRef | 1:CAS:528:DyaL1MXktlCn&md5=64cebc0926dadcf4e8c24bb8e888cf38CAS |

[35]  K. Knauer, H. Hemond, Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J. Phycol. 2000, 36, 506.
Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta).CrossRef | 1:CAS:528:DC%2BD3cXmslarsLs%3D&md5=f8207e2d5958b26e1e0f30f56c35d8c0CAS |

[36]  S. Maeda, S. Nakashima, T. Takeshita, S. Higashi, Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment. Sep. Sci. Technol. 1985, 20, 153.
Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment.CrossRef | 1:CAS:528:DyaL2MXitFKmsrw%3D&md5=4fd00bf0ae9429dc5d3219ab3888dcb4CAS |

[37]  Y. Yamaoka, O. Takimura, Marine algae resistant to inorganic arsenic. Agric. Biol. Chem. 1986, 50, 185.
Marine algae resistant to inorganic arsenic.CrossRef | 1:CAS:528:DyaL28XhtVeruro%3D&md5=c1b80b166c5211268546058db4662962CAS |

[38]  Y. Yamaoka, O. Takimura, H. Fuse, Environmental factors relating to arsenic accumulation by Dunaliella sp. Appl. Organomet. Chem. 1988, 2, 359.
Environmental factors relating to arsenic accumulation by Dunaliella sp.CrossRef | 1:CAS:528:DyaL1MXktlCm&md5=5fab52b8fb8e310e7a96a22f36b5fc8aCAS |

[39]  I. Kobayashi, S. Fujiwara, H. Saegusa, M. Inouye, H. Matsumoto, M. Tsuzuki, Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii. Mar. Biotechnol. (NY) 2006, 8, 94.
Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BD28XhsFCktbs%3D&md5=47c0a9c58874c3669930a48598afde7eCAS | 16249965PubMed |

[40]  A. R. Marin, S. R. Pezeshki, P. H. Masschelen, H. S. Choi, Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J. Plant Nutr. 1993, 16, 865.
Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants.CrossRef | 1:CAS:528:DyaK3sXkslWks7w%3D&md5=f076118ecdc03e28e6c079d6930647e8CAS |

[41]  L. López-Maury, F. J. Florencio, J. C. Reyes, Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 2003, 185, 5363.
Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803.CrossRef | 12949088PubMed |

[42]  J. F. Stolz, P. Basu, R. S. Oremland, Microbial arsenic metabolism: new twists on an old poison. Microbe 2010, 5, 53.

[43]  Y. Gong, H. N. Chou, C. D. Tu, X. Liu, J. T. Liu, L. R. Song, Effects of arsenate on the growth and microcystin production of Microcystis aeruginosa isolated from Taiwan as influenced by extracellular phosphate. J. Appl. Phycol. 2009, 21, 225.
Effects of arsenate on the growth and microcystin production of Microcystis aeruginosa isolated from Taiwan as influenced by extracellular phosphate.CrossRef | 1:CAS:528:DC%2BD1MXjsVOhsLo%3D&md5=8c34e069bfdab0aa0f4b814893c3e210CAS |

[44]  Y. Gong, L. R. Song, X. Q. Wu, B. D. Xiao, T. Fang, J. T. Liu, Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes. Environ. Toxicol. 2009, 24, 87.
Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes.CrossRef | 1:CAS:528:DC%2BD1MXisVWmtrg%3D&md5=53430364b2e754445830aa2171a7e729CAS | 18442067PubMed |

[45]  M. J. Huertas, L. López-Maury, J. Giner-Lamia, A. M. Sánchez-Riego, F. J. Florencio, Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 2014, 4, 865.
Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms.CrossRef | 1:CAS:528:DC%2BC2MXisFSit7w%3D&md5=434c5d853a3466e00e8965e630d20067CAS | 25501581PubMed |

[46]  S. Silver, K. Budd, K. M. Leahy, W. V. Shaw, D. Hammond, R. P. Novick, G. R. Willsky, M. H. Malamy, H. Rosenberg, Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 1981, 146, 983.
| 1:CAS:528:DyaL3MXktlyqt7c%3D&md5=552fcff475a4840c10b3e2dea15d5951CAS | 7016838PubMed |

[47]  M. Shariatpanahi, A. C. Anderson, A. A. Abdelghani, Uptake and distribution of sodium arsenate by bacterial cells. Trace Subst. Environ. Health 1982, 16, 170.
| 1:CAS:528:DyaL3sXltlGju7g%3D&md5=37720f978031251b46d5c4b408e67a50CAS |

[48]  W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713.
Arsenic speciation in the environment.CrossRef | 1:CAS:528:DyaL1MXktVaitbg%3D&md5=bd2feb00951215fcf8892f3d5064f063CAS |

[49]  B. C. McBride, R. S. Wolfe, Biosynthesis of dimethylarsine by methanobacterium. Biochemistry-US 1971, 10, 4312.
Biosynthesis of dimethylarsine by methanobacterium.CrossRef | 1:CAS:528:DyaE38XhtFyrsA%3D%3D&md5=3c22e0e3b2e975d55a0e98cd11d2d891CAS |

[50]  W. R. Cullen, B. C. McBride, A. W. Pickett, The transformation of arsenicals by Candida humicola. Can. J. Microbiol. 1979, 25, 1201.
The transformation of arsenicals by Candida humicola.CrossRef | 1:CAS:528:DyaE1MXlsFCjsb8%3D&md5=157a062dc9f037eb1a7ffd7f98c170b0CAS | 534956PubMed |

[51]  W. R. Cullen, B. C. McBride, M. Reimer, Induction of the aerobic methylation of arsenic by Candida humicola. Bull. Environ. Contam. Toxicol. 1979, 21, 157.
Induction of the aerobic methylation of arsenic by Candida humicola.CrossRef | 1:CAS:528:DyaE1MXhtlemtbw%3D&md5=97c895a34740473a8f722f52178e0c21CAS | 444693PubMed |

[52]  R. Wysocki, P. Bobrowicz, S. Ulaszewski, The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 1997, 272, 30061.
The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport.CrossRef | 1:CAS:528:DyaK2sXnslGht7c%3D&md5=a6950fade527f78f3e4e71be7bd17c0fCAS | 9374482PubMed |

[53]  Y. Shibata, M. Sekiguchi, A. Otsuki, M. Morita, Arsenic compounds in zoo- and phyto-plankton of marine origin. Appl. Organomet. Chem. 1996, 10, 713.
Arsenic compounds in zoo- and phyto-plankton of marine origin.CrossRef | 1:CAS:528:DyaK28XnsFynu7k%3D&md5=29d138563af105e7e1c831b7101b2016CAS |

[54]  J. S. Edmonds, Y. Shibata, K. A. Francesconi, R. J. Rippingale, M. Morita, Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl. Organomet. Chem. 1997, 11, 281.
Arsenic transformations in short marine food chains studied by HPLC-ICP MS.CrossRef | 1:CAS:528:DyaK2sXis12qsr8%3D&md5=e5a2e5124d8eefa4106484471cd194acCAS |

[55]  S. Foster, D. Thomson, W. Maher, Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar. Chem. 2008, 108, 172.
Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum.CrossRef | 1:CAS:528:DC%2BD1cXnvVyrtQ%3D%3D&md5=336a5860645e704a0942df74fc9c7c95CAS |

[56]  E. Duncan, S. Foster, W. Maher, Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta. Bot. Mar. 2010, 53, 377.
Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta.CrossRef | 1:CAS:528:DC%2BC3cXhtlKis7bI&md5=87d8b73f6c96620d3a188b6d948997e1CAS |

[57]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar. Chem. 2013, 157, 78.
The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta.CrossRef | 1:CAS:528:DC%2BC3sXhvVWksbzI&md5=c8fd668b8762bf50ab9605db9885905bCAS |

[58]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environ. Chem. 2013, 10, 91.
Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana.CrossRef | 1:CAS:528:DC%2BC3sXosVCkt7Y%3D&md5=50e3dbb65be2b7b4ffe76df50b233eb9CAS |

[59]  E. G. Duncan, W. A. Maher, S. D. Foster, K. M. Mikac, F. Krikowa, The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. J. Appl. Phycol. 2014, 26, 2129.
The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta.CrossRef | 1:CAS:528:DC%2BC2cXhvVentL%2FF&md5=8f2281c64b0fbe9f3290ae2d3044a814CAS |

[60]  R. L. Bennett, M. H. Malamy, Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem. Biophys. Res. Commun. 1970, 40, 496.
Arsenate resistant mutants of Escherichia coli and phosphate transport.CrossRef | 1:CAS:528:DyaE3cXkvVCru7Y%3D&md5=85571aaa496ae0c7f35b2a336bc8f9b8CAS | 4919964PubMed |

[61]  G. R. Willsky, R. L. Bennett, M. H. Malamy, Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J. Bacteriol. 1973, 113, 529.
| 1:CAS:528:DyaE3sXhtVyjurY%3D&md5=32911e7d155d44a8e9922d7c9e368860CAS | 4570598PubMed |

[62]  G. R. Willsky, M. H. Malamy, Effect of arsenate on inorganic phosphate transport in Escherichia coli. J. Bacteriol. 1980, 144, 366.
| 1:CAS:528:DyaL3cXmtlWlsLY%3D&md5=18b0b1c4a5711c20e4df89b93200300cCAS | 6998959PubMed |

[63]  F. M. Harold, J. R. Baarda, Interaction of arsenate with phosphate-transport systems in wild-type and mutant Streptococcus faecalis. J. Bacteriol. 1966, 91, 2257.
| 1:CAS:528:DyaF28XktFChs7k%3D&md5=43e8574d1894abaa83b761d55e3f3f6bCAS | 4957614PubMed |

[64]  F. M. Harold, E. Spitz, Accumulation of arsenate, phosphate, and aspartate by Streptococcus faecalis. J. Bacteriol. 1975, 122, 266.
| 1:CAS:528:DyaE2MXhs1OgsLk%3D&md5=bb872f3895f9701106b429546f8b544bCAS |

[65]  K. Budd, S. R. Craig, Resistance to arsenate toxicity in the blue-green alga Synechococcus leopoliensis. Can. J. Bot. 1981, 59, 1518.
Resistance to arsenate toxicity in the blue-green alga Synechococcus leopoliensis.CrossRef | 1:CAS:528:DyaL3MXlsVCqt78%3D&md5=7cdcbfa4d55cf535deecf3a1b14ea535CAS |

[66]  A. Rothstein, Interactions of arsenate with phosphate-transporting system of yeast. J. Gen. Physiol. 1963, 46, 1075.
Interactions of arsenate with phosphate-transporting system of yeast.CrossRef | 1:CAS:528:DyaF3sXktlOhurg%3D&md5=547ce29992c64cc0579702f0a7f40f89CAS | 13975391PubMed |

[67]  C. Jung, A. Rothstein, Arsenate uptake and release in relation to the inhibition of transport and glycolysis in yeast. Biochem. Pharmacol. 1965, 14, 1093.
Arsenate uptake and release in relation to the inhibition of transport and glycolysis in yeast.CrossRef | 1:CAS:528:DyaF2MXksVSrurc%3D&md5=6f445a303fb41e54b6da082062617388CAS | 5854739PubMed |

[68]  M. Bun-ya, K. Shikata, S. Nakade, C. Yompakdee, S. Harashima, Y. Oshima, Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 1996, 29, 344.
| 1:CAS:528:DyaK28XitlCntro%3D&md5=a45c01af8374d90c5caf6b0b044a5899CAS | 8598055PubMed |

[69]  M. W. Shen, D. Shah, W. Chen, N. Da Silva, Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol. Prog. 2012, 28, 654.
Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter.CrossRef | 1:CAS:528:DC%2BC38XptVOmt7Y%3D&md5=9730192dea902766e18d4c0c0f018898CAS | 22628173PubMed |

[70]  I. Kobayashi, S. Fujiwara, K. Shimogawara, T. Kaise, H. Usuda, M. Tsuzuki, Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas. Plant Cell Physiol. 2003, 44, 597.
Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas.CrossRef | 1:CAS:528:DC%2BD3sXkvFSjsLs%3D&md5=713138c13ab56fa62d4f97f19f4ba8e8CAS | 12826625PubMed |

[71]  C. J. Asher, P. F. Reay, Arsenic uptake by barley seedlings. Aust. J. Plant Physiol. 1979, 6, 459.
Arsenic uptake by barley seedlings.CrossRef | 1:CAS:528:DyaL3cXhvVyktQ%3D%3D&md5=90e403032b7b419143a43191c0a7a853CAS |

[72]  C. I. Ullrich-Eberius, A. Sanz, A. J. Novacky, Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J. Exp. Bot. 1989, 40, 119.
Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1.CrossRef | 1:CAS:528:DyaL1MXitV2gu70%3D&md5=cf86610651aed3f1d04558dc98b5d242CAS |

[73]  A. A. Meharg, M. R. Macnair, An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol. 1990, 116, 29.
An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L.CrossRef | 1:CAS:528:DyaK3MXnvVOhsA%3D%3D&md5=003d2028dc54df6b87114ee2f6ad6a10CAS |

[74]  A. A. Meharg, M. R. Macnair, Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 1992, 43, 519.
Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L.CrossRef | 1:CAS:528:DyaK38XisFSis7Y%3D&md5=710d2dc32f628787b54b9ec54538e002CAS |

[75]  A. A. Meharg, J. Bailey, K. Breadmore, M. R. Macnair, Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil 1994, 160, 11.
Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate.CrossRef | 1:CAS:528:DyaK2cXivFCnt7w%3D&md5=d6304caa9077d481d7069aac473c5713CAS |

[76]  H. Shin, H. S. Shin, G. R. Dewbre, M. J. Harrison, Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 2004, 39, 629.
Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.CrossRef | 1:CAS:528:DC%2BD2cXnslOms78%3D&md5=d99c86e35c0db5a3985f76de0eaa947aCAS | 15272879PubMed |

[77]  Z. Wu, H. Ren, S. P. McGrath, P. Wu, F. J. Zhao, Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 2011, 157, 498.
Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.CrossRef | 1:CAS:528:DC%2BC3MXht1Sit73E&md5=d16f3731c96275bd1cb3f7152359d176CAS | 21715673PubMed |

[78]  E. Remy, T. R. Cabrito, R. A. Batista, M. C. Teixeira, I. Sá-Correia, P. Duque, The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol. 2012, 195, 356.
The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation.CrossRef | 1:CAS:528:DC%2BC38XosFSnurc%3D&md5=7d1db94a6d2598e711abec25e44ce82fCAS | 22578268PubMed |

[79]  H. Rosenberg, R. G. Gerdes, K. Chegwidden, Two systems for the uptake of phosphate in Escherichia coli. J. Bacteriol. 1977, 131, 505.
| 1:CAS:528:DyaE2sXltFCgt7o%3D&md5=f8e3cf1e0646d465cddaca526974b700CAS | 328484PubMed |

[80]  F. D. Pitt, S. Mazard, L. Humphreys, D. J. Scanlan, Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. J. Bacteriol. 2010, 192, 3512.
Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium.CrossRef | 1:CAS:528:DC%2BC3cXpslSmurg%3D&md5=cdeb4c2f0ef34cad12da1911cef2775bCAS | 20435726PubMed |

[81]  M. Á. Muñoz-Martín, P. Mateo, F. Leganés, F. Fernández-Piñas, Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120. Anal. Bioanal. Chem. 2011, 400, 3573.
Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120.CrossRef | 21533636PubMed |

[82]  M. Elias, A. Wellner, K. Goldin-Azulay, E. Chbriere, J. A. Vorholt, T. J. Erb, D. S. Tawfic, The molecular basis of phosphate discrimination in arsenate-rich environment. Nature 2012, 491, 134.
The molecular basis of phosphate discrimination in arsenate-rich environment.CrossRef | 1:CAS:528:DC%2BC38XhsVGjsb7J&md5=b6413b8027a98c8c0fa4e3e25f32e60cCAS | 23034649PubMed |

[83]  N. X. Wang, Y. Li, X. H. Deng, A. J. Miao, R. Ji, L. Y. Yang, Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res. 2013, 47, 2497.
Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.CrossRef | 1:CAS:528:DC%2BC3sXjvFentL8%3D&md5=2b380e0e790b639fa7470ddb178babe9CAS | 23497978PubMed |

[84]  Z. Wang, Z. Luo, C. Yan, F. Che, Y. Yan, Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes. J. Hazard. Mater. 2014, 276, 393.
Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes.CrossRef | 1:CAS:528:DC%2BC2cXhtVOitLbN&md5=6cf226e8ede0e688bb4f50720df53cfeCAS | 24922097PubMed |

[85]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.CrossRef | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=cf87d63d1a62f760c9c057b76330b41fCAS | 18968746PubMed |

[86]  Ministry of the Environment Government of Japan, Environmental Quality Standards for Water. Available at http://www.env.go.jp/en/water/wq/wp.pdf [Verified 6 July 2015].

[87]  P. Vaithiyanathan, C. J. Richardson, Nutrient profiles in the everglades: examination along the eutrophication gradient. Sci. Total Environ. 1997, 205, 81.
Nutrient profiles in the everglades: examination along the eutrophication gradient.CrossRef | 1:CAS:528:DyaK2sXms1yjsLc%3D&md5=edcc33c6c7906141b3a2ab54444fa92cCAS | 9352671PubMed |

[88]  D. G. Kinniburgh, P. L. Smedley (Eds), Arsenic Contamination of Ground Water in Bangladesh. BGS Technical Report WC/00/19, Vol. 2: Final Report 2011 (British Geological Survey: Keyworth, UK). Available at http://www.bgs.ac.uk/downloads/start.cfm?id=2223 [Verified 6 July 2015].

[89]  A. Jain, R. H. Loeppert, Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 2011, 29, 1422.
Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite.CrossRef |

[90]  L. S. King, D. Kozono, P. Agre, From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 2004, 5, 687.
From structure to disease: the evolving tale of aquaporin biology.CrossRef | 1:CAS:528:DC%2BD2cXntFCms7Y%3D&md5=d7186c9f933ffc36e31d43c8419e5274CAS | 15340377PubMed |

[91]  Z. Liu, J. Shen, J. M. Carbrey, R. Mukhopadhyay, P. Agre, B. P. Rosen, Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 2002, 99, 6053.
Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9.CrossRef | 1:CAS:528:DC%2BD38XjslWgu7g%3D&md5=88f23fcc61419085e550203deb4faf49CAS | 11972053PubMed |

[92]  B. P. Rosen, Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 86.
Biochemistry of arsenic detoxification.CrossRef | 1:CAS:528:DC%2BD38Xnt1KksbY%3D&md5=6f35e6f3122034b013fbe3ed7f1fb113CAS | 12354618PubMed |

[93]  R. Wysocki, C. C. Chéry, D. Wawrzycka, M. Van Hulle, R. Cornelis, J. M. Thevelein, M. J. Tamás, The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 2001, 40, 1391.
The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.CrossRef | 1:CAS:528:DC%2BD3MXlt1Gnsrw%3D&md5=ba11d184dba61308a3a506c0803dee0dCAS | 11442837PubMed |

[94]  E. Maciaszczyk-Dziubinska, I. Migdal, M. Migocka, T. Bocer, R. Wysocki, The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 2010, 584, 726.
The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.CrossRef | 1:CAS:528:DC%2BC3cXhs1yhtrs%3D&md5=2f33c73b457d3a5e8222cf7656b753c2CAS | 20026328PubMed |

[95]  Z. Liu, E. Boles, B. P. Rosen, Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 17312.
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae.CrossRef | 1:CAS:528:DC%2BD2cXjt1GnsL4%3D&md5=bba3d274581eee7a17fd32290434c0cdCAS | 14966117PubMed |

[96]  F. J. Zhao, S. P. McGrath, A. A. Meharg, Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535.
Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies.CrossRef | 1:CAS:528:DC%2BC3cXnslSjsb0%3D&md5=735411842756ac91198272169ab66af6CAS | 20192735PubMed |

[97]  R. Y. Li, Y. Ago, W. J. Liu, N. Mitani, J. Feldmann, S. P. McGrath, J. F. Ma, F. J. Zhao, The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 2009, 150, 2071.
The rice aquaporin Lsi1 mediates uptake of methylated arsenic species.CrossRef | 1:CAS:528:DC%2BD1MXhtVWntrzK&md5=67b70fadc09d913f6b65c0ad3371b7c0CAS | 19542298PubMed |

[98]  J. F. Ma, N. Yamaji, N. Mitani, X. Y. Xu, Y. H. Su, S. P. McGrath, F. J. Zhao, Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931.
Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.CrossRef | 1:CAS:528:DC%2BD1cXptFGisbc%3D&md5=9ac94fdb01ecf55380832ada5342f4f7CAS | 18626020PubMed |

[99]  M. J. Abedin, J. Feldmann, A. A. Meharg, Uptake kinetics of arsenic species in rice plants. Plant Physiol. 2002, 128, 1120.
Uptake kinetics of arsenic species in rice plants.CrossRef | 1:CAS:528:DC%2BD38Xit1Gqtb8%3D&md5=7bbda6568eae6b1bc2f5597cf207b1f6CAS | 11891266PubMed |

[100]  A. C. Schmidt, J. Mattusch, W. Reisser, R. Wennrich, Uptake and accumulation behaviour of angiosperms irrigated with solutions of different arsenic species. Chemosphere 2004, 56, 305.
Uptake and accumulation behaviour of angiosperms irrigated with solutions of different arsenic species.CrossRef | 1:CAS:528:DC%2BD2cXksVagu74%3D&md5=7de935bb756da224f305bfcb9cc95816CAS | 15172603PubMed |

[101]  A. Raab, P. N. Williams, A. Meharg, J. Feldmann, Uptake and translocation of inorganic and methylated arsenic species by plants. Environ. Chem. 2007, 4, 197.
Uptake and translocation of inorganic and methylated arsenic species by plants.CrossRef | 1:CAS:528:DC%2BD2sXmvFaltro%3D&md5=617689a0b38d153bcd62e2a09a0fd1dcCAS |

[102]  Z. Wang, Z. Luo, C. Yan, Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ. Sci. Pollut. Res. Int. 2013, 20, 7286.
Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa.CrossRef | 1:CAS:528:DC%2BC3sXhsFSmsb%2FI&md5=a16b481937a27564f00ee3b09dac7ce2CAS | 23636594PubMed |

[103]  F. J. Zhao, J. F. Ma, A. A. Meharg, S. P. McGrath, Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777.
Arsenic uptake and metabolism in plants.CrossRef | 1:CAS:528:DC%2BD1MXjsFGitbw%3D&md5=06de79891e1774aa02abe36158b94694CAS | 19207683PubMed |

[104]  W. Ali, S. V. Isayenkov, F. J. Zhao, F. J. M. Maathuis, Arsenite transport in plants. Cell. Mol. Life Sci. 2009, 66, 2329.
Arsenite transport in plants.CrossRef | 1:CAS:528:DC%2BD1MXot12lsbY%3D&md5=14e26418f205ab46f92cf5d3a28933a1CAS | 19350206PubMed |

[105]  X. Wang, L. Q. Ma, B. Rathinasabapathi, Y. Cai, Y. G. Liu, G. M. Zeng, Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environ. Sci. Technol. 2011, 45, 9719.
Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata.CrossRef | 1:CAS:528:DC%2BC3MXhtlOjsbjN&md5=7021b13ded820631159a22fabf42ec03CAS | 22029254PubMed |

[106]  R. Mukhopadhyay, B. P. Rosen, L. T. Phung, S. Silver, Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 2002, 26, 311.
Microbial arsenic: from geocycles to genes and enzymes.CrossRef | 1:CAS:528:DC%2BD38XmtVamsrg%3D&md5=9d08bc845f6807ed74cbf3f303265de7CAS | 12165430PubMed |

[107]  A. Raab, J. Feldmann, Microbial transformation of metals and metalloids. Sci. Prog. 2003, 86, 179.
Microbial transformation of metals and metalloids.CrossRef | 1:CAS:528:DC%2BD2cXlslamtro%3D&md5=304358b549a67819cc5616acee6a2bc6CAS | 15079996PubMed |

[108]  J. Messens, S. Silver, Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 2006, 362, 1.
Arsenate reduction: thiol cascade chemistry with convergent evolution.CrossRef | 1:CAS:528:DC%2BD28XovVSrtL8%3D&md5=221db00f9ef46e36066af8c7c7937cc5CAS | 16905151PubMed |

[109]  S. Silver, Bacterial resistances to toxic metal ions–a review. Gene 1996, 179, 9.
Bacterial resistances to toxic metal ions–a review.CrossRef | 1:CAS:528:DyaK28Xnt1WisLw%3D&md5=5cee4514e4d1c2c9386bd794032a8f50CAS | 8991852PubMed |

[110]  S. Silver, L. T. Phung, Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 1996, 50, 753.
Bacterial heavy metal resistance: new surprises.CrossRef | 1:CAS:528:DyaK28XmtFGht78%3D&md5=e887d24422803c617cbf936263e373dbCAS | 8905098PubMed |

[111]  R. Mukhopadhyay, B. P. Rosen, Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol. Lett. 1998, 168, 127.
Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase.CrossRef | 1:CAS:528:DyaK1cXntVyhurk%3D&md5=08ad5d91e2b1469ce897300bdb626aacCAS | 9812373PubMed |

[112]  P. Bobrowicz, R. Wysocki, G. Owsianik, A. Goffeau, S. Ulaszewski, Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 1997, 13, 819.
Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae.CrossRef | 1:CAS:528:DyaK2sXkslSnt7o%3D&md5=87778849fd423729147e5bd71111e303CAS | 9234670PubMed |

[113]  M. Ghosh, J. Shen, B. P. Rosen, Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1999, 96, 5001.
Pathways of As(III) detoxification in Saccharomyces cerevisiae.CrossRef | 1:CAS:528:DyaK1MXjtVKmsbY%3D&md5=d0998b706da68cf18bf58202d9b33ad5CAS | 10220408PubMed |

[114]  S. Pandey, R. Rai, L. C. Rai, Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J. Proteomics 2012, 75, 921.
Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress.CrossRef | 1:CAS:528:DC%2BC3MXhs1OmtrvI&md5=db6b1fde4d9f04223927721e2528bcc2CAS | 22057044PubMed |

[115]  J. Shi, A. Vlamis-Gardikas, F. Aslund, A. Holmgren, B. P. Rosen, Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J. Biol. Chem. 1999, 274, 36 039.
Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction.CrossRef | 1:CAS:528:DC%2BD3cXitFGg&md5=83eb1554ef2db3b127997a08f198afecCAS |

[116]  L. López-Maury, A. M. Sánchez-Riego, J. C. Reyes, F. J. Florencio, The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803. J. Bacteriol. 2009, 191, 3534.
The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803.CrossRef | 19304854PubMed |

[117]  R. Li, J. D. Haile, P. J. Kennelly, An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J. Bacteriol. 2003, 185, 6780.
An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics.CrossRef | 1:CAS:528:DC%2BD3sXpt1ynurc%3D&md5=7692305e7c690b625d2461e5a9cd4077CAS | 14617642PubMed |

[118]  J. P. Quinn, G. McMullan, Carbon-arsenic bond cleavage by a novel environmental bacterial isolate, strain ASV2. Microbiology 1995, 141, 721.
Carbon-arsenic bond cleavage by a novel environmental bacterial isolate, strain ASV2.CrossRef | 1:CAS:528:DyaK2MXksVeis7Y%3D&md5=0c324f4ed5ce31bf714d482671613d3bCAS | 7711909PubMed |

[119]  B. Zhang, L. Wang, Y. Xu, X. Yin, Study on absorption and transformation of arsenic in blue alga (Synechocystis sp. PCC6803). Asian J. Ecotoxicol. 2011, 6, 629.
| 1:CAS:528:DC%2BC38XosVKku7g%3D&md5=0b04f17cea3b65304f3ea16141363f49CAS |

[120]  S. Zhang, C. Rensing, Y. G. Zhu, Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments. Environ. Sci. Technol. 2014, 48, 994.
Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments.CrossRef | 1:CAS:528:DC%2BC3sXhvFKqt7nI&md5=48a6cc37c05c5f68e42b8b1d6f16f178CAS | 24359134PubMed |

[121]  J. Qin, C. R. Lehr, C. Yuan, X. C. Le, T. R. McDermott, B. P. Rosen, Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. USA 2009, 106, 5213.
Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.CrossRef | 1:CAS:528:DC%2BD1MXksVert7Y%3D&md5=65f485b3f3e4be9f06bc7a059da15030CAS | 19276121PubMed |

[122]  M. M. Bahar, M. Megharaj, R. Naidu, Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene. J. Hazard. Mater. 2013, 262, 997.
Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.CrossRef | 1:CAS:528:DC%2BC3sXhs1ehsw%3D%3D&md5=98460bea49038afbd5215616dfc6a38bCAS | 23290483PubMed |

[123]  J. M. Wood, F. S. Kennedy, C. G. Rosen, Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 1968, 220, 173.
Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium.CrossRef | 1:CAS:528:DyaF1MXhtV2r&md5=75d960af5589f2a495fc661bed617ccfCAS | 5693442PubMed |

[124]  M. O. Andreae, D. Klumpp, Biosynthesis and release of organoarsenic compounds by marine algae. Environ. Sci. Technol. 1979, 13, 738.
Biosynthesis and release of organoarsenic compounds by marine algae.CrossRef | 1:CAS:528:DyaE1MXksFans7Y%3D&md5=684af07f9829c354ffa1d2ff2a5b3eddCAS |

[125]  I. B. Karadjova, V. I. Slaveykovaa, D. L. Tsalev, The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat. Toxicol. 2008, 87, 264.
The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater.CrossRef | 1:CAS:528:DC%2BD1cXlslWqs7Y%3D&md5=e28d6800392c0967400bc7db1e241098CAS | 18378014PubMed |

[126]  S. Maeda, A. Ohki, T. Tokuda, M. Ohmine, Transformation of arsenic compounds in a freshwater food chain. Appl. Organomet. Chem. 1990, 4, 251.
Transformation of arsenic compounds in a freshwater food chain.CrossRef | 1:CAS:528:DyaK3MXmvVKgsg%3D%3D&md5=660dbbd89349e5db32183d53bcc5fee7CAS |

[127]  T. Kuroiwa, A. Ohki, K. Naka, S. Maeda, Biomethylation and biotransformation of arsenic in a freshwater food chain: green alga (Chlorella vulgaris) → shrimp (Neocaridina denticulata) → killifish (Oryzias iatipes). Appl. Organomet. Chem. 1994, 8, 325.
Biomethylation and biotransformation of arsenic in a freshwater food chain: green alga (Chlorella vulgaris) → shrimp (Neocaridina denticulata) → killifish (Oryzias iatipes).CrossRef | 1:CAS:528:DyaK2cXlslamsbg%3D&md5=47837546ca8387458ef2e855a293617dCAS |

[128]  S. Fujiwara, I. Kobayashi, S. Hoshino, T. Kaise, K. Shimogawara, H. Usuda, M. Tsuzuki, Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii. Plant Cell Physiol. 2000, 41, 77.
Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BD3cXos1Cjuw%3D%3D&md5=1a646da1df80f69cd5cdb33f4ae5b34bCAS | 10750711PubMed |

[129]  T. Kaise, M. Ogura, T. Nozaki, K. Saitoh, T. Sakurai, C. Matsubara, C. Watanabe, K. Hanaoka, Biomethylation of arsenic in an arsenic-rich freshwater environment. Appl. Organomet. Chem. 1997, 11, 297.
Biomethylation of arsenic in an arsenic-rich freshwater environment.CrossRef | 1:CAS:528:DyaK2sXis12qsr0%3D&md5=667de5a114f1df384a9bb82b06086126CAS |

[130]  S. B. Waters, V. Devesa, L. M. Del Razo, M. Styblo, D. J. Thomas, Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase. Chem. Res. Toxicol. 2004, 17, 404.
Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase.CrossRef | 1:CAS:528:DC%2BD2cXht1aiu70%3D&md5=2ea79c6138954fa1422f2da2bc4b04cfCAS | 15025511PubMed |

[131]  J. S. Edmonds, K. A. Francesconi, Transformations of arsenic in the marine environment. Experientia 1987, 43, 553.
Transformations of arsenic in the marine environment.CrossRef | 1:CAS:528:DyaL2sXltFaqtrc%3D&md5=f06dda7dfc9b15c098fc88132cfd1215CAS | 3556209PubMed |

[132]  J. S. Edmonds, K. A. Francesconi, R. V. Stick, Arsenic compounds from marine organisms. Nat. Prod. Rep. 1993, 10, 421.
Arsenic compounds from marine organisms.CrossRef | 1:CAS:528:DyaK3sXmslWmsr0%3D&md5=835fba6617baf7ccfb0c2acf77d520beCAS |

[133]  K. A. Francesconi, J. S. Edmonds, Biotransformation of arsenic in the marine environment, in Arsenic in the Environment. Part 1: Cycling and Characterization (Ed. J. O. Nriagu) 1994, Vol. 26, pp. 221–262 (Wiley: New York).

[134]  S. Matsuto, H. Kasuga, H. Okumoto, A. Takahashi, Accumulation of arsenic in blue-green alga, Phormidium sp. Comp. Biochem. Phys. C 1984, 78C, 377.
| 1:CAS:528:DyaL2cXls1KrtLk%3D&md5=cbe53a2e9538628f47ddaae8cfbca2caCAS |

[135]  V. Nischwitz, S. A. Pergantis, Identification of the novel thio-arsenosugars DMThioAsSugarCarboxyl, DMThioAsSugarCarbamate and DMThioAsSugarAdenine in extracts of giant clam tissues by high-performance liquid chromatography online with electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3579.
Identification of the novel thio-arsenosugars DMThioAsSugarCarboxyl, DMThioAsSugarCarbamate and DMThioAsSugarAdenine in extracts of giant clam tissues by high-performance liquid chromatography online with electrospray tandem mass spectrometry.CrossRef | 1:CAS:528:DC%2BD28XhtlWqs7nO&md5=68963fef55ac5e16c614c8434908117eCAS | 17083132PubMed |

[136]  I. Koch, J. Feldmann, L. Wang, P. Andrewes, K. J. Reimer, W. R. Cullen, Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci. Total Environ. 1999, 236, 101.
Arsenic in the Meager Creek hot springs environment, British Columbia, Canada.CrossRef | 1:CAS:528:DyaK1MXmt1Wrurg%3D&md5=999acb9b0d9c2c2aa4cf47fb600a9093CAS | 10535147PubMed |

[137]  Y. Yamaoka, M. L. Carmona, J. M. Oclarit, K. Jin, Y. Shibata, Arsenic compounds in marine sponge (Haliclona permolis, Halichondria japonica, Halichondria okadai and Haliclona sp. white) from Seto Inland Sea, Japan. Appl. Organomet. Chem. 2001, 15, 261.
Arsenic compounds in marine sponge (Haliclona permolis, Halichondria japonica, Halichondria okadai and Haliclona sp. white) from Seto Inland Sea, Japan.CrossRef | 1:CAS:528:DC%2BD3MXivFOku70%3D&md5=5ee95c789ed9be2de2bf682e7bd73c1bCAS |

[138]  J. S. Edmonds, K. A. Francesconi, J. A. Hansen, Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 1982, 38, 643.
Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna.CrossRef | 1:CAS:528:DyaL38Xks12js7s%3D&md5=09b49fd62d71d8d2d64a87490de732d6CAS |

[139]  V. W. M. Lai, W. R. Cullen, C. F. Harrington, K. J. Reimer, The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin. Appl. Organomet. Chem. 1997, 11, 797.
The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin.CrossRef | 1:CAS:528:DyaK2sXmvFaqsrw%3D&md5=198e982ec0831afe1d25cf27c7afdf3eCAS |

[140]  A. Geiszinger, W. Goessler, S. N. Pedersen, K. A. Francesconi, Arsenic biotransformation by the brown macroalga Fucus serratus. Environ. Toxicol. Chem. 2001, 20, 2255.
Arsenic biotransformation by the brown macroalga Fucus serratus.CrossRef | 1:CAS:528:DC%2BD38XitlWitQ%3D%3D&md5=665238a59260d3dd9150ff1384df391bCAS | 11596758PubMed |

[141]  S. Khokiattiwong, W. Goessler, S. N. Pedersen, C. Raymond, K. A. Francesconi, Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater. Appl. Organomet. Chem. 2001, 15, 481.
Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater.CrossRef | 1:CAS:528:DC%2BD3MXktFOqs7g%3D&md5=e280fd11b1ce46d6ddf431e3d652a43dCAS |

[142]  S. C. R. Granchinho, C. M. Franz, E. Polishchuk, W. R. Cullen, K. J. Reimer, Transformation of arsenicV by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri. Appl. Organomet. Chem. 2002, 16, 721.
Transformation of arsenicV by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri.CrossRef | 1:CAS:528:DC%2BD38XpslWmtrk%3D&md5=2f7b2b01d1061b4fafd49ada37dfc54bCAS |

[143]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 396.
Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia.CrossRef | 1:CAS:528:DC%2BD2sXms1yit7s%3D&md5=1f6501a501723e7d26f7a08a14882e1bCAS |

[144]  Y. Shibata, M. Morita, A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric. Biol. Chem. 1988, 52, 1087.
A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii.CrossRef | 1:CAS:528:DyaL1cXksFWksLg%3D&md5=d9e83c76c9a51e8b61c1ef8e16a9a8d3CAS |

[145]  S. Miyashita, M. Shimoya, Y. Kamidate, T. Kuroiwa, O. Shikino, S. Fujiwara, K. A. Francesconi, T. Kaise, Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 2009, 75, 1065.
Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS.CrossRef | 1:CAS:528:DC%2BD1MXltFWltLk%3D&md5=d8b044bfea9244a168eee271911954f2CAS | 19203781PubMed |

[146]  V. Devesa, M. A. Suner, V. W. M. Lai, S. C. R. Granchinho, J. M. Martinez, D. Velez, W. R. Cullen, R. Montoro, Determination of arsenic species in a freshwater crustacean Procambarus clarkii. Appl. Organomet. Chem. 2002, 16, 123.
Determination of arsenic species in a freshwater crustacean Procambarus clarkii.CrossRef | 1:CAS:528:DC%2BD38XhsFeqsLg%3D&md5=2f7d204550ff07df9161014d3335d5ceCAS |

[147]  C. Soeroes, W. Goessler, K. A. Francesconi, E. Schmeisser, R. Raml, N. Kienzl, M. Kahn, P. Fodor, D. Kuehnelt, Thio arsenosugars in freshwater mussels from the Danube in Hungary. J. Environ. Monit. 2005, 7, 688.
Thio arsenosugars in freshwater mussels from the Danube in Hungary.CrossRef | 1:CAS:528:DC%2BD2MXlsF2htL0%3D&md5=62cbbb62e86a4e2794e77530447996aaCAS | 15986048PubMed |

[148]  S. C. R. Granchinho, E. Polishchuk, W. R. Cullen, K. J. Reimer, Biomethylation and bioaccumulation of arsenic(V) by marine alga Fucus gardneri. Appl. Organomet. Chem. 2001, 15, 553.
Biomethylation and bioaccumulation of arsenic(V) by marine alga Fucus gardneri.CrossRef | 1:CAS:528:DC%2BD3MXktFOqsLs%3D&md5=73aa7f56d4692c6f1004a52246d300efCAS |

[149]  Y. Shibata, M. Morita, Chemical forms of arsenic in the environment – with special emphasis in the marine environment. Biomed. Res. Trace Elements 2000, 11, 1.
| 1:CAS:528:DC%2BD3cXjsFGksLk%3D&md5=5743282abb2cbd15c58f186d1c329d09CAS |

[150]  S. Maeda, Biotransformation of arsenic in freshwater organisms, arsenic and old mustard: chemical problems in the destruction of old arsenical and ‘mustard’ munitions. NATO Advanced Science Institute Series, Sub-Series 1. Disarmament Technologies 1998, 19, 135.
| 1:CAS:528:DyaK1cXntVaru7c%3D&md5=6c3e6a66dcbeb8145483582f0349437cCAS |

[151]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside. J. Chem. Soc. Perk. T. 1 1992, 11, 1349.
Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside.CrossRef |

[152]  R. Ritsema, L. Dukan, T. R. i. Navarro, E. Van Leeuwen, N. Oliveira, P. Wolfs, E. Lebret, Speciation of arsenic compounds in urine by LC–ICP MS. Appl. Organomet. Chem. 1998, 12, 591.
Speciation of arsenic compounds in urine by LC–ICP MS.CrossRef | 1:CAS:528:DyaK1cXlsFOnurk%3D&md5=41e5ae67d6f06f768cbb385a36294581CAS |

[153]  E. G. Duncan, W. A. Maher, S. D. Foster, Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environ. Sci. Technol. 2015, 49, 33.
Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.CrossRef | 1:CAS:528:DC%2BC2cXitVSgsLfN&md5=970c1fdf3aa69038a74339ef6d2a4233CAS | 25443092PubMed |

[154]  M. Morita, Y. Shibata, Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere 1988, 17, 1147.
Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame).CrossRef | 1:CAS:528:DyaL1cXkvVOlt78%3D&md5=80c1d36d94a060c4d6563890105630c8CAS |

[155]  S. García-Salgado, G. Raber, R. Raml, C. Magnes, K. A. Francesconi, Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 2012, 9, 63.
Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae.CrossRef |

[156]  R. A. Glabonjat, G. Raber, K. B. Jensen, J. Ehgartner, K. A. Francesconi, Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization. Anal. Chem. 2014, 86, 10 282.
Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization.CrossRef | 1:CAS:528:DC%2BC2cXhsFOrurnK&md5=01db9bc7664f42d167c5fa8ccf204bf8CAS |

[157]  X. Xue, G. Raber, S. Foster, S. Chen, K. A. Francesconi, Y. Zhu, Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environ. Chem. 2014, 11, 506.
Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803.CrossRef | 1:CAS:528:DC%2BC2cXhs1Oit7fO&md5=c0d9b6bd1b6b27d66112bf3ab3287795CAS |

[158]  W. Goessler, M. Pavkov, Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating. Analyst (Lond.) 2003, 128, 796.
Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating.CrossRef | 1:CAS:528:DC%2BD3sXktlOjt7s%3D&md5=b6bf85a736121289716db259b0a2d7f4CAS |

[159]  E. A. Woolson, Generation of alkylarsines from soil. Weed Sci. 1977, 25, 412.
| 1:CAS:528:DyaE2sXlvF2rurg%3D&md5=3ca07dedc2496695795931fd3a6a313bCAS |

[160]  J. G. Sanders, Microbial role in the demethylation and oxidation of methylated arsenicals in seawater. Chemosphere 1979, 8, 135.
Microbial role in the demethylation and oxidation of methylated arsenicals in seawater.CrossRef | 1:CAS:528:DyaE1MXksVChtL8%3D&md5=506271ee2618ee28497b737afc0ef302CAS |

[161]  K. Hanaoka, S. Tagawa, T. Kaise, The fate of organoarsenic compounds in marine ecosystems. Appl. Organomet. Chem. 1992, 6, 139.
The fate of organoarsenic compounds in marine ecosystems.CrossRef | 1:CAS:528:DyaK38Xis1ajurY%3D&md5=7f4c5c114983b4cdcb9ae45f66e9c0a7CAS |

[162]  G. Caumette, I. Koch, K. J. Reimer, Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 2012, 14, 2841.
Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain.CrossRef | 1:CAS:528:DC%2BC38XhsFOltLvF&md5=06484b9d64a22c4ea18f0bdd69921eadCAS | 23014956PubMed |

[163]  M. Valls, V. D. Lorenzo, Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 2002, 26, 327.
Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution.CrossRef | 1:CAS:528:DC%2BD38Xot1ajt78%3D&md5=50b91e105adfab0c06bfc84990c3dd9aCAS | 12413663PubMed |

[164]  J. Akai, H. M. Anawar, Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: special reference to arsenic contamination in groundwater. Phys. Chem. Earth 2013, 58–60, 2.
Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: special reference to arsenic contamination in groundwater.CrossRef |

[165]  S. Loewenberg, Scientists tackle water contamination in Bangladesh. Lancet 2007, 370, 471.
Scientists tackle water contamination in Bangladesh.CrossRef | 17695063PubMed |



Rent Article (via Deepdyve) Export Citation