Molecular modeling of iron and arsenic interactions with carboxy groups in natural biomass
Gabriela C. Silva A , Igor F. Vasconcelos B , Regina P. de Carvalho A C , Maria Sylvia S. Dantas A and Virginia S. T. Ciminelli A DA Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627 – CEP 31270-901, Belo Horizonte MG, Brazil.
B Department of Metallurgical and Materials Engineering, Universidade Federal do Ceará, Campus do Pici Bloco 714 – CEP 60455-760, Fortaleza CE, Brazil.
C Microscopy Centre, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627 – CEP 31270-901, Belo Horizonte MG, Brazil.
D Corresponding author. Email: ciminelli@demet.ufmg.br
Environmental Chemistry 6(4) 350-356 https://doi.org/10.1071/EN09031
Submitted: 10 March 2009 Accepted: 19 June 2009 Published: 25 August 2009
Environmental context. Arsenic has been considered one of the most important global environmental pollutants. Its occurrence in water systems is a result of natural processes and anthropogenic activities. In view of their high toxicity and the consequent health problems associated with human exposure to contaminated waters and food, there is an increasing interest in the study of the specific interactions of arsenic species with organic matter. Here, specific interactions among arsenic, iron and a vegetable biomass are investigated with a view to demonstrate how these interactions can affect arsenic mobility in the environment.
Abstract. The interaction of iron and arsenic with dried lettuce leaves was investigated using a combination of spectroscopic techniques. Iron binding to carboxy groups is indicated by a decrease of 84% in iron loading after esterification. According to extended X-ray absorption fine structure (EXAFS) analysis, FeIII is coordinated by six oxygen atoms (Fe–O distance of 1.98 Å), two carbon atoms (Fe–C distance of 2.85 Å) in a bidentate mononuclear form, and 0.5 or 1 arsenic atoms (Fe–As distance of 2.93–2.94 Å). Arsenic is sorbed only when the biomass has been previously loaded with iron. AsV is coordinated by four oxygen atoms (As–O distance of 1.71 Å) and one iron atom in a bidentate mononuclear form or two iron atoms (As–Fe distance of 2.93–2.94 Å) in a bidentate binuclear form. In conclusion, the results demonstrate that carboxylic acid groups can affect AsV mobility in the environment so long as iron is available for bridging.
Additional keywords: arsenic, biomass, carboxyl, EXAFS, iron.
Acknowledgements
The authors thank Professor Wander L. Vasconcelos for the FTIR analysis. Financial support for this research was provided by Fapemig, Capes and CNPq. X-ray absorption spectroscopy was performed at the Laboratório Nacional de Luz Síncrotron (LNLS/Campinas/Brazil). The contributions from anonymous reviewers are also gratefully acknowledged The authors are members of the National Institute of Science and Technology – Acqua.
Examples of the iron sorption raw data and arsenic isotherm are available from the author or from the Environmental Chemistry website at http://publish.csiro.au/?act=view_file&file_id=EN09031_AC.pdf.
[1]
C. K. Jain ,
I. Ali ,
Arsenic: occurrence, toxicity and speciation techniques.
Water Res. 2000
, 34, 4304.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
[3]
G. P. Cobb ,
K. Sands ,
M. Waters ,
B. G. Wixson ,
E. Dorward-King ,
Accumulation of heavy metals by vegetables grown in mine wastes.
Environ. Toxicol. Chem. 2000
, 19, 600.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[4]
R. P. de Carvalho ,
K. J. Guedes ,
K. Krambrock ,
Biosorption of copper by dried plant leaves studied by electron paramagnetic resonance and infrared spectroscopy.
Hydrometallurgy 2001
, 59, 407.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
R. P. de Carvalho ,
J. R. Freitas ,
A.-M. G. Sousa ,
R. L. Moreira ,
M. V. B. Pinheiro ,
K. Krambrock ,
Biosorption of copper ions by dried leaves: chemical bonds and site symmetry.
Hydrometallurgy 2003
, 71, 277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
A. Banerjee ,
D. Nayak ,
S. Lahiri ,
Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads.
Appl. Radiat. Isot. 2007
, 65, 769.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
L. Dupont ,
G. Jolly ,
M. Aplincourt ,
Arsenic adsorption on lignocellulosic substrate loaded with ferric ion.
Environ. Chem. Lett. 2007
, 5, 125.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
K. N. Ghimire ,
K. Inoue ,
H. Yamaguchi ,
K. Makino ,
T. Miyajima ,
Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste.
Water Res. 2003
, 37, 4945.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
G. S. Murugesan ,
M. Sathishkumar ,
K. Swaminathan ,
Arsenic removal from groundwater by pretreated waste tea fungal biomass.
Bioresour. Technol. 2006
, 97, 483.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[10]
J. A. Muñoz ,
A. Gonzalo ,
M. Valient ,
Arsenic adsorption by Fe(III) loaded open-celled cellulose sponge: thermodynamic and selectivity aspects.
Environ. Sci. Technol. 2002
, 36, 3405.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
C. Jeon ,
I. W. Nah ,
K.-Y. Hwang ,
Adsorption of heavy metals using magnetically modified alginic acid.
Hydrometallurgy 2007
, 86, 140.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
D. Pokhrel ,
T. Viraraghavan ,
Arsenic removal from an aqueous solution by a modified fungal biomass.
Water Res. 2006
, 40, 549.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
K. Ritter ,
G. R. Aiken ,
J. F. Ranville ,
M. Bauer ,
D. L. Macalady ,
Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III).
Environ. Sci. Technol. 2006
, 40, 5380.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
J.-K. Hwang ,
C.-J. Kim ,
C.-T. Kim ,
Extrusion of apple pomace facilitates pectin extraction.
J. Food Sci. 1998
, 63, 841.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
K. J. Tiemann ,
J. L. Gardea-Torresdey ,
G. Gamez ,
K. Dokken ,
S. Sias ,
Use of X-ray absorption spectroscopy and esterification to investigate Cr(III) and Ni(II) ligands in alfalfa biomass.
Environ. Sci. Technol. 1999
, 33, 150.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
A. L. Ankudinov ,
B. Ravel ,
J. J. Rehr ,
Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure.
Phys. Rev. B 1998
, 58, 7565.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
B. Ravel ,
M. Newville ,
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.
J. Synchrotron Radiat. 2005
, 12, 537.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
[19]
I. F. Vasconcelos ,
E. A. Haack ,
P. A. Maurice ,
B. A. Bunker ,
EXAFS analysis of Cd(II) adsorption to kaolinite.
Chem. Geol. 2008
, 249, 237.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
K. L. Turte ,
S. G. Shova ,
V. M. Meriacre ,
M. Gdaniec ,
Y. A. Simonov ,
J. Lipkowski ,
J. Bartolome ,
F. Wagner ,
G. Filoti ,
Synthesis and structure of trinuclear iron acetate [Fe3O(CH3COO)6(H2O)3][AuCl4]·6H2O.
J. Struct. Chem. 2002
, 43, 108.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
M. I. Boyanov ,
E. J. O’Loughlin ,
E. E. Roden ,
J. B. Fein ,
K. M. Kemner ,
Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: the influence of speciation on uranyl reduction studied by titration and XAFS.
Geochim. Cosmochim. Acta 2007
, 71, 1898.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
K. Kitahama ,
R. Kiriyama ,
Y. Baba ,
Refinement of the crystal structure of scorodite.
Acta Crystallogr. B 1975
, 31, 322.
| Crossref | GoogleScholarGoogle Scholar |
[23]
A. C. Q. Ladeira ,
V. S. T. Ciminelli ,
Adsorption and desorption of arsenic on an oxisol and its constituents.
Water Res. 2004
, 38, 2087.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
L. Zeng ,
Arsenic adsorption from aqueous solutions on an Fe(III)-Si binary oxide adsorbent.
Water Qual. Res. J. Canada 2004
, 39, 267.
|
CAS |
[25]
M. Jansen ,
Crystal structure of As2O5, a new type of framework structure.
Z. Anorg. Allg. Chem. 1978
, 441, 5.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
P. L. Smedley ,
D. G. Kinniburgh ,
A review of the source, behaviour and distribution of arsenic in natural waters.
Appl. Geochem. 2002
, 17, 517.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
X. Guo ,
Y. Du ,
F. Chen ,
H.-S. Park ,
Y. Xie ,
Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (α-FeOOH): EXAFS study.
J. Colloid Interface Sci. 2007
, 314, 427.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]
D. M. Sherman ,
S. R. Randall ,
Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy.
Geochim. Cosmochim. Acta 2003
, 67, 4223.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
A. C. Q. Ladeira ,
V. S. T. Ciminelli ,
H. A. Duarte ,
M. C. M. Alves ,
A. Y. Ramos ,
Mechanism of anion retention from EXAFS and density functional calculations: arsenic(V) adsorbed on gibbsite.
Geochim. Cosmochim. Acta 2001
, 65, 1211.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Accessory publication